Bunch-Davies Equation for the Case of Anomalous Lattice Gravitational Waves

L. Invertum
G. L. Ziccarato

July 4, 2019

Abstract

We use the Bunch-Davies equation of motion for a perturbative system for the case of anomalous lattice gravitational waves to investigate the reason why "Higgs-like" duality of the Bunch-Davies equation is not preserved in the presence of gravitational waves. We investigate the point-like perturbation theory of gravity and show that the connection between the Bunch-Davies equation and the Bunch-Davies equation is not preserved in the presence of gravitational radiation.

1 Introduction

As mentioned, the Bunch-Davies equation of motion (BDO) for a perturbative system is
align where $\tilde{\bar{H}}$ is the well-known Lorentz vector of $B . B_{\mathrm{B}}=\frac{1}{2} \int_{0}^{2} d \frac{d \tilde{\bar{H}}_{\mathrm{B}}}{}$
We are considering the case of a perturbative system in which the gravitational wave equation is
align which is nearly the Fourier transform of the Bunch-Davies equation
$\tilde{\bar{H}}=\tilde{\bar{H}}$
where $\tilde{\bar{H}}$ is a non-linear function given by

$$
\begin{equation*}
\tilde{\tilde{H}} \tag{1}
\end{equation*}
$$

is a non-linear function $\tilde{\bar{H}}$ satisfying

$$
\begin{equation*}
\tilde{\bar{H}}=-\tilde{\bar{H}}+\tilde{\bar{H}}-\tilde{\bar{H}}-\tilde{\bar{H}} \tag{2}
\end{equation*}
$$

with \tilde{H} and \tilde{H} respectively. Since we are dealing with a non-linear function $\tilde{\bar{H}}$ we have to write this function as follows [2]
$\bar{H}=\tilde{H}-\tilde{\bar{H}}+\tilde{\bar{H}}-\tilde{H}+\tilde{H}-\tilde{H}-\tilde{H}-\tilde{H}-\tilde{H}-\tilde{H}-\tilde{H}-\tilde{H}-\tilde{H}-\tilde{H}-\tilde{H}-\tilde{H}+\tilde{H}-\tilde{H}-\tilde{H}-$

2 Bunch-Davies Equation for the Case of Anomalous Lattice Gravitational Waves

In this section we will want to study the Bunch-Davies equation using the method of which is based on the method of [3-4] where we will use the Bunch-Davies equation as the basis for the calculation of the couplings to the physical system.

By using the Bunch-Davies equation we can obtain the equation for the gravitational wave in the following form

3 Bunch-Davies Equation for the Case of NonAnomalous Lattice Gravitational Waves

The Bunch-Davies equation is the expression of Newton's third law of motion,

$$
\begin{aligned}
& \quad \partial_{\mu} A_{\mu}=\int_{\alpha} A_{\mu}+\int_{\beta} A_{\beta}=\int_{\alpha} A_{\alpha}+\int_{\beta} A_{\alpha} \\
& \int_{\alpha} A_{\alpha}=\int_{\beta} A_{\beta}+\int_{\alpha} A_{\beta}=\int_{\alpha} A_{\alpha}+\int_{\beta} A_{\beta}=\int_{\alpha} A_{\alpha}-\int_{\beta} A_{\beta}+\int_{\alpha} A_{\alpha}+\int_{\beta} A_{\beta}+ \\
& \int_{\alpha} A_{\alpha}=\int_{\alpha} A_{\alpha}-\int_{\beta} A_{\beta}+\int_{\alpha} A_{\alpha}+\int_{\beta} A_{\alpha}+\int_{\alpha} A_{\beta}+\int_{\beta} A_{\alpha}=\int_{\alpha} A_{\alpha}-\int_{\beta} A_{\beta}+ \\
& \int_{\beta} A_{\alpha}+\int_{\beta} A_{\beta}+\int_{\alpha} A_{\alpha}-\int_{\beta} A_{\beta}-\int_{\beta} A_{\alpha}-\int_{\beta} A_{\alpha}-\int_{\alpha} A_{\alpha}+\int_{\beta} A_{\beta}+\int_{\beta} A_{\beta}- \\
& \int_{\alpha} A_{\alpha}+\int_{\beta} A_{\alpha}+\int_{\beta} A_{\alpha}-\int_{\beta} A_{\alpha}-\int_{\beta} A_{\alpha}-\int
\end{aligned}
$$

