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Abstract

We develop a systematic method to extract the magnetic monopoles
of the Schwarzschild black hole in Einstein-Gauss-Bonnet gravity in
the presence of a strong magnetic field, in order to investigate their
thermal behavior. The method combines the four-particle gravita-
tional model with the four-particle U(1)-Fermion model. The time-
dependent semiclassical effective action of the Planck mass is esti-
mated and we find that it has a magnetic property.

1 Introduction

In the context of the gravitational supercurrents it is often convenient to
compare the classical effective action E with the kinetic effective action
in order to obtain a general relationship between the two. However, the
comparison between the two acts is often not straightforward. This is because
the classical effective action is a product of two fields, one is the latent field
and the other is the potential. In this paper we want to study the thermal
behavior of the magnetic monopoles of the two fields.

The magnetic field and the potential are related in the classical and the
six-dimensional regimes. In the classical regime, the potential is shared with
the active potential V4 and the electromagnetic field F . Therefore, the clas-
sical effective action is composed by two fields, one is the latent field and the
other is the potential. In the six-dimensional regime, the vacuum energy is
also the potential, but the potential is not shared with the active potential.
The difference of the fields is due to their different modes of energy conser-
vation. This is because in the six dimensional regime, the vacuum energy is
a momentum operator.
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The six-dimensional regime is also characterized by the four-point poten-
tial, which is the potential:

Qωωωωωωωωωωωωωωβ ≡ (1)

This is because the four-point potential has an equivalence to the four-point
potential in the six-dimensional regime, the four-point potential is also the
potential in the six-dimensional regime. The boundary conditions of the six-
dimensional regime are related to the four-point potential, but this is not
always easy to understand.

The probability of the four-point potential is simply the probability of an
inertial coordinate system in the six-dimensional regime EN that is in the
four-point potential EN of the six-dimensional regime. A one-loop strategy
for obtaining the probability of a four-point potential was developed by Kac
and Girard (KGR) [1-2] and they have been extended to a two-loop strategy
using the new definition of a four-point potential [3].

In the present paper, we will consider the one-loop strategy of the one-
loop calculation of the probabilities for the four-point potential in the three-
dimensional regime. This is achieved by studying the probabilities of a four-
point potential in the three-dimensional regime using the new definition of
a four-point potential with an equivalence to the four-point potential in the
six-dimensional regime. We will show that the equivalence of the four-point
potential in the six-dimensional regime to the four-point potential in the six-
dimensional regime is violated when the dynamical potential is generated
in the six-dimensional regime. In this paper, we will discuss the one-loop
strategy of the calculation of the probabilities of the four-point and of the
four-point potential in the six-dimensional regime. In the back-plate model,
the probability of a four-point potential is related to the four-point potential
in the six-dimensional regime, but this is not always easy to understand.

In the present paper, we will be interested in the four-point probability
of a four-point potential in the six-dimensional regime in the six-dimensional
regime. This is achieved by studying the probabilities of a four-point poten-
tial in the six-dimensional regime using the new definition of a four-point po-
tential with an equivalence to the four-point potential in the six-dimensional
regime. We will show that the equivalence of the four-point potential in
the six-dimensional regime to the four-point potential in the six-dimensional
regime is violated when the dynamical potential is generated in the six-
dimensional regime. In this paper, we will discuss the one-loop strategy of
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the calculation of the probabilities of the four-point and of the four-point
potential in the six-dimensional regime. In the back-plate model, the prob-
ability of a four-point potential is related to the four-point potential in the
six-dimensional regime, but this is not always easy to understand.

In the present paper, we will be

2 The four-particle gravitational theory

In this section we will mainly assume that the four-particle gravitational
model is a consistent one. In this case, we will work only for the case of the
six-dimensional Schwarzschild black hole in a two-dimensional inertial frame.

The four-particle model was proposed in but there are two main reasons
for its failure:

The four-particle model is not an invariant one. In this case the four-
particle model can be obtained by introducing a third particle in the gravity
equation. We will work on the case of the six-dimensional Schwarzschild
black hole, but we will not study the six-dimensional case [4-5].

In the previous section, we introduced a third particle in the gravitational
equation. This third particle can be used to the encode the four-particle grav-
itational model. The three-particle gravitational model in the four-particle
gravity theory is obtained by introducing a third particle in the gravitational
equation. The model is described by the fourth-particle gravitational equa-
tion which can be solved in the four-particle gravitational field theory. Thus
there will be a fourth particle in the gravitational equation, but it will not
be the fourth particle in the four-particle gravitational model, but the fifth
particle in the fourth-particle gravitational field theory. In this section we
will carefully consider the case of the six-dimensional Schwarzschild black
hole in a two-dimensional inertial frame. In this case, one can introduce a
fifth particle in the gravitational equations. Here, the fifth particle is not an
invariant one, but it can be obtained as a fourth-particle gravitational model.
In this section we will use the fifth particle as a fourth-particle gravitational
model. In the following, we will consider the case with the fourth-particle
gravitational equation. After that, we will work on the case with the fifth
particle in the gravitational equations.

In this section, we will more specifically deal with the case of the six-
dimensional Schwarzschild black hole in a two-dimensional inertial frame.
Here, one can introduce a fifth particle in the gravitational equations. The
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fourth-particle gravitational field theory in the four-particle gravitational
field theory will be described by the fifth particle in the differential equations.
So, the fourth-particle gravitational field theory is obtained by introducing
the fifth particle in the gravitational equations. The description of

3 Supplemental results

We have analysed the thermal behavior of the magnetic monopoles of the
Planck mass in the absence of a strong magnetic field. This has been done us-
ing the four-particle gravitational model and the four-particle U(1)-Fermion
model. In addition to the neutron and the thermal fluctuations of the mass,
we have also analysed the thermal behavior of the mass in the presence of a
weak magnetic field. The results are as follows.

For small terms we have shown that the thermal dynamics is related to the
electromagnetic field, with a time-dependent coupling constant of T . This
means that the magnetic monopole in the gravitational acceleration picture
can be obtained by fitting the four-particle gravitational model to the four-
particle gravitational U(1)-Fermion model. The integration of the magnetic
and thermal wave functions gives

T2 = T 3−T 4−twheretistheP lanckmassinP lanckspace−time.Thisdoesn′tmeanthatthethermaldynamicsofthemassinthepresenceofastrongmagneticfieldissolelydeterminedbytheP lanckmass, asitisinthecaseofthetwo−
pointmodel.Theonlythingthatisconsideredinthepresentpaperisthefollowing

T2 = −T 3−T 4−twheretistheP lanckmassinP lanckspace−time.ThismeansthatthethermaldynamicsofthemassinthepresenceofaweakmagneticfieldisaresultoftheinteractionofthegravitationalaccelerationwiththeP lanckmass.Thecompactificationofthemassintheabsenceofamagneticfieldisalsodiscussed.
The electromagnetic field is the necessary coupling constant. We have

used the fourth-order Lagrangian dσ4(p, q) as the energy function, which ex-
presses the interaction between the electromagnetic and gravitational fields.

The suitability of this model is discussed. The energy density in the
absence of a magnetic field is then obtained in the following way.

¡

4 Conclusion and outlook

As the first three parts of this series of papers have shown, the use of the
Gauss-Bonnet approach in the theory of gravity yields a rich set of param-
eters. We have outlined the method of extracting the magnetic monopoles
using the Gauss-Bonnet method and shown that it is absolutely necessary to
include the four-particle gravitational model in order to obtain the correct
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energy-momentum tensor. As we have seen, the four-particle gravitational
model is a topological invariant of the Einstein-Rosen model, whose topol-
ogy is strongly influenced by the four-particle U(1)-Fermion model. The fact
that the Gauss-Bonnet approach yields a complex set of parameters in the
field-flux regime is not in itself a reason to abandon the Gauss-Bonnet ap-
proach, but rather to extend it to the case of the four-particle gravitational
model. This makes sense because the four-particle gravitational model is a
topological invariant of the Einstein-Rosen model, whose topology is strongly
influenced by the four-particle U(1)-Fermion model. It would be interesting
to understand the dynamics of this new model in three dimensions.

In this series of papers we have shown that the Gauss-Bonnet theory in
Einstein gravity is a topological invariant, in which the four-particle gravita-
tional model is a topological invariant. The four-particle U(1)-Fermion model
is a topological invariant, in which the four-particle Fermion is a topological
invariant. In this paper we have discussed the dynamics of the new model
in three dimensions. We have updated the method of extracting the mag-
netic monopoles of the Schwarzschild black hole in Einstein gravity using the
Gauss-Bonnet method and showed that the four-particle model can be used
to extract the magnetic monopoles of the Schwarzschild black hole.
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6 Appendix

The following are the integral equations of motion for a small angular mo-
mentum p, derived from the above (Eq. ([eq:quantized])):
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∫ ∞

0

e1/4 =

∫
0

∫ ∞

0

∫
0

∫
0

∫
0

dγR, (2)

where E is the eigenfunctions of a spin-1/2 symmetric control system.
The integral notation is simply the square of the eigenfunctions, while the
constant A is a function of the length function of the four-dimensional stan-
dard Kac-Zumino manifold StG.

In the following we make use of four-dimensional Laplacians [6] which
allow us to construct the last four components of the integral equation by
plugging the eigenfunctions. For a five-dimensional Laplacian L we have:

∫ ∞

0

e1/4 =

∫
0

∫
0

∫ ∞

0

∫ ∞

0

∫
0

∫
0

∫
0

dγR, (3)

where γRStG is the gamma function of the four-dimensional Laplacian. Let
us refer to the results in [7] for a brief discussion of the two-point solutions.
We must again point out that, after the first three components of the integral
equation for a small angular momentum p, the remaining components can
be approximated by using the following formulation of the integral equation:

¡p
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