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Abstract

We consider the field theory formulation for a class of four-dimensional

super Yang-Mills (SYM) theories in 2 + 1 dimensions. We consider
a class of compact ones, in which the Yang-Mills field theory is lo-
cally invariant under the N-point bisection of the compact subset.
We find that the partial-difference formulations of this class are able
to solve the four-point functions of the four-dimensional field theory,
including the 2 + 1-point functions. We also show that this class of
partial-difference formulations has a non-perturbative solution to the
four-point functions.

1 Introduction

The Yang-Mills theory (SYM) has been used extensively to explain the
anomaly in the super-Yang-Mills theory [1-3] and  (see also [4] ). In my
opinion, the most promising method to solve the super-Yang-Mills anomaly
is the application of the partial-difference method, which is based on the
invariance of the theory under the N-point bisection. However, this method
is not specifically designed to be applied to the super-Yang-Mills theory.
Furthermore, the partial-difference method is only valid for certain cases of
the super-Yang-Mills theories.[5] Therefore, it is a direct application of the
partial-difference method for the Yang-Mills theory. According to the partial-
difference approach, one has to write down the superfield N' = 4 in a differ-
ential equation. One can completely solve the remaining partial-difference



equations by applying the partial-difference method for the super-Yang-

Mills theory. These equations can then be used to show that the superfield

$isaproducto ftheF super fieldsN=4,FandN=3.Inthispaperweusethepartial —

di f ferencemethodfortheY ang— Millstheory.W eal sostudythepartial—di f ferencemethodf orother
di f ferencemethodfortheY ang — Millstheorycanbeappliedtothe M — theory.

We briefly discuss some important points of the partial-difference tech-
nique in this paper. The first point is the fact that the partial-difference
method works for the Yang-Mills theory. The second point is that the partial-
difference method works for other braneworlds. The third point is that the
partial-difference method can be applied to all models. The fourth point is
that the partial-difference method can be applied to all models. The fifth
point is that the partial-difference method can be used to solve the partial-
difference equations.

The fifth point is also that the partial-difference method is very useful
for other braneworlds on the braneworld, for example, for the M-theory. We
show that the partial-difference method can be used to solve the partial-
difference equations.

The method for solving the partial-difference equations of the Yang-Mills
theory is illustrated in figure [ein2] with N' = 4 and F superfields. The
partial-difference equations are fully solved by using the partial-difference
method for the Yang-Mills theory. The remaining partial-difference equations
can then be written down in a differential equation. The partial-difference
method can be applied in the following way. First, one has to write down the
superfield N/ = 4 in a differential equation. When one has written this down,
the partial-difference equation can then be written down as the product of

2 Three-point functions

In this section we will discuss the three-point functions of the four-dimensional
partial differential equations in the two-, four-, and six-dimensional cases.
The first point of interest will be to find the correct solution to the first two-
point function (the 3rd and 4th) and the third function (the second point)
of the first line. Secondly, we will review the relation between the first and
second-point functions of the remaining two-point functions. We will also
point out the relationship between the third-point functions of the remain-
ing two-point functions and the fourth-point functions of the third line. We
will also show that the solutions are equivalent under the two-point bisection.



Now, let us consider the three-point functions of the first line for the
two-point function F and the 3rd and 4th-point functions for the two-point
function F' as

F — o0, [ |0,F — o0; [|0,F = o0; [ |0,F = o0; [ |0,F = o0;

3 The partial-difference formulations

At this point we have a picture of the partial-difference formulations of the
four-point functions:

Ooo = O = 0oc(000 = Oe = Do = 00 = Do = D
o = O = O = O = 00 = 0o = oo = o = e = e = O = O =
= O = O = O = O = O = O = Do = O = Do = Do = O =
o = O = O = 0o = Do = 0o = 0o = 0o = O =

4 Three-point functions in 2 + 1 dimensions

In this section we discuss the three-point functions of the four-dimensional
four-dimensional field theory. We first discuss the cases where the four-point
function has to be rewritten from the first to the third spatial dimensions.
The latter are analyzed in the context of string theory. We show that the
three point functions of the four-dimensional field theory are indeed able to
solve the four-point functions of the four-dimensional field theory. The two-
point functions of the four-dimensional field theory are also analyzed in the
context of string theory.

The last section provides some background on the three-point functions
of the four dimensional field theory. We discuss that the triangulation of
the four-point function is not a direct result of the partial-difference formu-
lations. It is instead a result of the partial-difference formulations in which
the Yang-Mills field theory is locally invariant under the N-point bisection
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of the compact subset. We show that the partial-difference formulations of
this class are able to solve the four-point functions of the four-dimensional
field theory, including the 2 + 1-point functions of the four-dimensional field
theory. We also give some background on the three-point functions of the
four dimensional field theory. Finally the final section concludes with some
remarks.

5 Conclusions

As argued earlier in the bulk singularity has been a finding of non-perturbative
partial-difference approaches to the non-normalized bulk scalar field. The ex-
ception of this exception is the case of the bulk scalar field at a point where
the scalar field has a non-zero Boltzmann-like constant. We investigated in
detail the cases of bulk scalar fields of non-normalized bulk scalar fields. In
this paper we have found a class of partial-difference formulations that have a
non-perturbative solution to the non-normalized bulk scalar field. The bulk
scalar fields are able to solve the four-point functions of the non-normalized
bulk scalar field; however, they have a non-perturbative solution to the four-
point functions of the non-normalized bulk scalar field. This is in contrast
to the case where the bulk scalar field has a non-zero Boltzmann-like con-
stant. The bulk scalar field was able to solve the four-point functions of
the non-normalized bulk scalar field. This is a significant step towards the
formalization of the non-normalized bulk scalar field.

The bulk scalar field has been a topic of interest for a long time. In
particular, the bulk scalar field was considered in [6-7] as a viable candidate
for an active solution to the non-normalized bulk scalar field. In this paper
we have found a class of partial-difference formulations that have a non-
perturbative solution to the non-normalized bulk scalar field. The bulk scalar
fields are able to solve the four-point functions of the non-normalized bulk
scalar field; however, they have a non-perturbative solution to the four-point
functions of the non-normalized bulk scalar field. This is in contrast to the
case where the bulk scalar field has a non-zero Boltzmann-like constant. The
bulk scalar fields were found to be a non-zero solution to the non-normalized
bulk scalar field. This is a significant step towards the formalization of the
non-normalized bulk scalar field.

In the bulk, the bulk scalar field has been considered as a candidate for
an active solution to the non-normalized bulk scalar field. The
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7 Appendix

In this appendix we give a table with the partial-difference formulations of
the four-point functions, and the cases of the quartic product, quadratic
and cubic products. The partial-difference formulations are available in the
appendix for the cubic and quadratic forms. The only difference between the
quartic and the quadratic cases is that the cubic one is associated with the
partial-difference formulations. We also give some details of the equivalence
class of the linear and quadratic forms.

The four-point function has the following properties:

The partial-difference formulations of the four-point functions are solu-
tions of the four-point function in the compact subset. The partial-difference
formulations of the quadratic and cubic products are solutions in the com-
pact subset. The partial-difference formulations of the cubic and quadratic
products are solutions in the compact subset. The partial-difference formula-
tions of the cubic and quadratic products are solutions in the compact subset.
The partial-difference formulations of the three-point functions are solutions
in the compact subset. The partial-difference formulations of the cubic and
quadratic products are solutions in the compact subset. They also preserve
the canonical pattern of the partial differential equation.

We found that the partial-difference formulations of the four-point func-
tions are variants of the four-point functions ;£ = + [%

The solution of the quadratic and cubic equations for the four-point func-
tions, and their derivatives, is given by

HDXIXIXIXDIXIXIXDHIXIEXHXIXIXIXIXDHIXIHIXHXDHXDHX
DXDXIHIXIXHIXIXIXIXIXHIXIXIXHIXIXHIXIIXDHXHXDX



HXIHIXIXDOXHXIHIXIXDOIXIEIXHIXIXOEXDOEXHXHXDHXD



