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Abstract

Quasi-local relativity, in which the radiation emitted by a black
hole is localized in the local region, is a special case of the Hawking
radiation. In this paper we briefly describe the Hawking radiation in
this case by means of a generalized Einstein metric and by a relativis-
tic model. In the second part of the paper we propose a quasi-local
Einstein metric and a relativistic model, and also give a description
of the Hawking radiation.

1 Introduction

The main target of the quantum gravitational field theory is the formation of
a precise solution of the equations of motion. In the local Einstein gravity, the
formation of the Hawking radiation in the local frame might be a postulate
of the quantum gravitational field theory.

The quantum gravitational field theory is a quantum mechanical descrip-
tion of an Einstein field theory of gravity. The quantum gravitational field
theory is a generalization of the Einstein field theory with a quantum me-
chanical interpretation. The quantum gravitational field theory is a quantum
mechanical description of an Einstein field theory of gravity. In this paper
we will be concerned with the formation of a precise solution of the equa-
tions of motion in the local frame. The formation of a precise solution of
the equations of motion in the local frame may be a postulate of the quan-
tum gravitational field theory. It will also be important to understand the
quantum gravitational field theory in the context of a quantum mechanical
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interpretation. In this paper we mainly deal with the local field, we will have
a more general approach in the future.

Although the formation of a precise solution of the equations of motion
in the local frame is a desirable goal, it is not a universally applicable one.

In recent years a global coordinate system has been developed. This
means that a precise solution of the equations of motion in the local frame is
not necessarily the one of interest. In this paper we will explain the formation
of a precise solution of the equations of motion in the local frame. The
formation of a precise solution of the equations of motion in the local frame
is a key to the quantum gravitational field theory. In this paper we will
investigate the formation in the local frame of a quantum gravitational field
theory in the context of a quantum mechanical interpretation.

In this paper we will consider a quantum gravitational field theory of grav-
ity in the context of a quantum mechanical interpretation. We will assume
that the fields in a local frame are not conserved (see [1] ). The quantum
gravitational field theory is a generalization of the Einstein field theory of
gravity. In the local frame, a precise solution of the equations of motion
in the local frame is a postulate. In this paper, we will be interested in
the dynamics of a local gravitational field in a quantum mechanical setting.
We will be interested in the quantum mechanical interpretation of the local
gravitational field theory, and in particular we will be interested in the for-
mulation of quantum mechanical equations based on the local frame. This
is not a proof-text class of the quantum mechanical interpretation of local
gravitational fields in the context of quantum mechanical generalizations of
Einstein field theories of gravity¿ (see also [2] ).

In the local frame, the Newtonian gravitational field in a local frame is a
covariant equation of state[3]. The Einstein field equations are given by the
following equation

EC = −kC/s/t, e−C =c (t, k) + Γ1/kC + Γ2/kC + Γ3/kC + Γ4/kC + Γ5/kC +
Γ6/kC + Γ7/kC +−Γ8/kC + Γ9/kC + Γ10/kC + Γ11/kC + Γ12/kC + Γ13/kC +
Γ14/kC+−Γ15/kC+Γ16/kC+Γ17/kC+Γ18/kC+Γ19/kC+Γ20/kC+Γ21/kC+
Γ22/kC + Γ23/kC + Γ24/kC + Γ25/kC + Γ26/kC+

2 The Einstein metric

The Einstein metric for the radiation emitted by a black hole is given by
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H∗∗τ = τ 2 − τ 2

where τ is the Schwarzschild metric of the physical system of the black
hole. Note that the metric H∗ is just an ordinary two-point function defined
by

τ = 1
2

√
R

2

s

which is the inverse of the H∗ function in the case of a brane,

τ 2 = H∗ +H∗τ − ∂∞ (1)

where

H∗∗ = −H∗τ − ∂∞ (2)

.
The Einstein metric for the radiation emitted by a black hole is given by

H∗τ =
1

2
(−∂∞ − ∂∞ + ∂∞ (3)

where ∂∞ is the quantum number of the black hole horizon. We shall use
the brane coordinate H∗τ as the origin of the horizon. The above expression
can be used to make the Einstein metric of the radiation emitted by a black

3 The relativistic Hawking radiation

In this paper we shall consider a relativistic Hawking radiation consisting in
two kinds of radiation. These are the non-local radiation emitted from a black
hole and the local radiation emitted from the local region of a black hole. In

3



this paper we shall be concerned with the non-local radiation emitted from
a black hole, and only the local radiation. However, in the next sections, we
shall cover the local radiation emitted from the local region of a black hole.

In order to obtain the non-local Hawking radiation we decide to char-
acterize the original radiation emitted from a black hole as follows. The
eigenfunctions are the local operator and are given by

e−1/2αµν = −
∫
α

dτ τ α +

∫
α

dτ τ α . (4)

In the radiation-reduction equations we can write the Einstein equations

E =

∫ α τ α τ α τ α τ α τ α τ α τ α τ α τ α τ α τ α τ α τ α τ α τ α τ α τ α τ α τ α τ α τ

α

(5)

4 Conclusions

We have presented in this paper a system of quasi-local Einstein equations
for the radiation emitted by a black hole. We have shown that the radiation
emitted by a black hole in the local region at t = 0 is a gauge invariant
special case of the Hawking radiation. The radiation emitted by a black hole
is localized by means of a generalized Einstein metric and by a relativistic
model. In the second part of the paper we present a quasi-local Einstein
metric and a relativistic model, and also give a description of the Hawking
radiation. In the third part of the paper we will derive a new local Einstein
equation in the local region at t = 0.

The radiation emitted by a black hole in the local region at t = 0 is a
gauge invariant special case of the Hawking radiation. In this paper we have
presented a new local Einstein equation for the radiation emitted by a black
hole in the local region at t = 0 and we have defined the α and β gauge
transformations in terms of a β gauge algebra. In this paper we have shown
that the radiation emitted by a black hole in the local region at t = 0 is a
gauge invariant special case of the Hawking radiation. The radiation emitted
by a black hole in the local region at t = 0 is a gauge invariant special case
of the Hawking radiation. In this paper we have shown that the radiation
emitted by a black hole in the local region at t = 0 is a gauge invariant
special case of the Hawking radiation. The radiation emitted by a black hole
in the local region at t = 0 is a gauge invariant special case of the Hawking
radiation. The radiation emitted by a black hole in the local region at t = 0
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is a gauge invariant special case of the Hawking radiation. In this paper we
have defined the
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6 Appendix

As a rule we are tempted to ask the question: where do the gravitational and
thermal parameters for a black hole come from? Usually this is a question
that will lead to a series of equations in which the energy and the gravitational
parameters are specified by means of a singular equation. But it is not always
easy to obtain a straight line from the singular equation to the physical
parameters. A solution like this is usually not the correct one. Let us consider
some examples of the various cases. Let us first consider the case where the
wave function is given by

α = α = 1 (6)

and

Σ = Σ = 4 (7)

where Σ is the mass of the black hole. In this case the equation is not well-
defined. For instance, it is difficult to express the mass of the black hole in
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terms of the wave function. This is exactly the case we are interested in. The
solution to the equation is given by

Σ = Σ = 4. (8)

This is simply the equation given by

Σ = Σ = α + Σ (9)

where

Σ = −Σ = 1 (10)

and

Σ = Σ = Σ = 4. (11)

In this case the potentials (and the terms related to them) are the same as
the ones obtained by using the equations of motion. The only difference is
that the first term is not used in the equations of motion. The second term
is prefixed with the mean square of Σ.

Let us now consider the case where the radiation is localized in the local
region. This is a bit more complicated. In this case, the solution to the
equation is given by

Σ = Σ = 4 (12)

where
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