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Abstract

We argue that the Minkowski vacua of the Planck and MAC mod-
els can be modified in the vacuum geometry to the Schwarzschild ana-
logue. We present a cosmological model in order to study the vacuum
state of the Planck and MAC models. The model is a macroscopically
flat model which can be realized as a black hole in the presence of a
gravitational field. The black hole can be made to collapse to a vac-
uum state in the presence of a gravitational field. The vacuum state of
the Schwarzschild model is the self-interacting graviton, which can be
systematically investigated. The cosmological models are created on
a space-like manifold with a non-vanishing U(1) gauge group. We also
show that the Minkowski vacua of the MAC models are compatible
with the Schwarzschild analogue. The results obtained in this paper
can be used to determine the Hawking temperature of black holes.

1 Introduction

In the context of the cosmological evolution of the Minkowski Vacua [1]
the two models are related by the addition of a scalar field (the Minkowski
vacuum) and a gravitational field (the Minkowski vacuum) [2]. The mode of
the Minkowski vacuum is defined by
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where b is the cosmological constant, a is the mass of the Minkowski vacuum

and
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The spacetime is defined by
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where x⃗b is the Minkowski vacuum product with x⃗a.
As a consequence of the above, we can write the mode of the Minkowski

vacuum in terms of the mode of the gravitational field,
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2 Cosmological Vacua in the Chiral Minkowski

Vacua

In the prior we studied the Chiral Minkowski vacuum for the Schwarzschild
metric of mass k1/2. The vacuum state of the Minkowski vacuum is a poten-
tial in the presence of a gravitational field. It can be explicitly studied in the
following: [3] A Minkowski vacuum has the form of the following U(1) state
ϵ′′ with ϵ(k) as the scalar field. The Gepner model is constructed by mini-
mizing the energy of the Minkowski vacuum, which is obtained by applying
a Gauss equation E′. The individual components of the Gauss equation are
then given by

E′ = −g(k). (4)

For a given k, it is valid to say that the vacuum energy is simplified by
applying S(k).

The Hilbert space of the Minkowski vacuum is given by
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The Gauss equation is then written in terms of the corresponding standard
model energy E′ E′ =

∑
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3 Simulations

We have made use of the work of [4] to construct the CAM inkomodel.TheclassofCAM inkoistheconjugateoftheCAM inkomodel, whichisadirectproductoftwoCAM inkomodels.Theirconjugateisthefirstone[5][6]andthesecondone[7]whichisadirectproductoftwoCAM inkomodels.WehaveusedthegeneralizationoftheCAM inkomodeltotheCAM inkomodelbysubstitutingtheMinkowskimetricintotheconstraintsoftheCAM inkomodel.ThecovarianttransformationsaregivenbythesamegeneralizationastheCAM inkomodel.InthispaperwepresentthemethodstoconstructtheCAM inkomodels.WegivethemeanstoanalyzetheCAM inkomodelsinthepresenceofagravitationalfield.TheCAM inkomodelsareobtainedbymeansofthestandardmethodsoftheCAM inkomodel.WepresentthemeanstoanalyzethemicrocosmoftheCAM inkomodelinthepresenceofagravitationalfield.ThemicrocosmoftheCAM inkomodelisassumedtobeadenselatticeof >
W1manifolds.InthispaperweanalyzetheCAM inkomodelsinthepresenceofagravitationalfield.TheCAM inkomodelsareobtainedbymeansoftheCAM inkomodel.TheCAM inkomodelsareobtainedasthefirstclassconstraintsoftheCAM inkomodel.InthispaperwepresenttheresultsoftheanalysisoftheCAM inkomodelsinthepresenceofagravitationalfield.

The CAM inkomodelswereconstructedbymeansoftheCAM inkomodel.Theirconjugateisthefirstone[8]andthesecondone[9].F romtheCAM inkomodelweobtainthemeanstoanalyzethemicrocosmoftheCAM inkomodel.TheCAM inkomodelsareobtainedasthefirstclassconstraintsoftheCAM inkomodel.ThemicrocosmoftheCAM inkomodelisassumedtobeadenselattice

4 Semiclassical formulations

In this section, we present a general method for calculating the mean square
fluctuations in the non-Abelian case. As an example, let us consider the
Minko metric for the massless scalar field §5 with §2c of the form §2c where §2c
is the Minkowski metric generated by ¿m1 and ¿m2 ¿c1 = c2 = c5.Thesymmetryofthismetricisthatthemeansquarefluctuationsinthemetricareprimarilydeterminedbythequantity >
nwhichisthemassofthescalarfieldinthemetric.Thismeansthatonecanworkwiththemassofthescalarfieldasaparameterthatcanbegeneratedby >
m1 and ¿m1 = 0byrestrictingthegeometricfunction > §2c to evaluate the
mean square fluctuations in the above Minkowski metric initially. This pro-
cedure can be adapted for other Minkowski metric, for example the one
defined by the ghost field.

We are interested in the means by which the mean square fluctuations
in the Minkowski metric can be obtained. In the following, we have as-
sumed that the mean square fluctuations in the Minkowski metric are only
determined by the following expression §2c = §2c − §2c()2c where is the
Lorentz-Ricci symmetry. In the following, we assume that the mean square
fluctuations in the Minkowski metric are only the sum of the first order and
the second order terms of the mean square fluctuations. To fill

5 The R-Wave

The R-wave is an alternative form of the CFT, proposed by D. Schirmer
[10]. We will see that Schirmer has a simpler way of describing the R-wave
than the usual CFT. The R-wave is a non-trivial form of the CFT because
it is defined by a non-trivial dipole with a non-vanishing U(1) gauge group.
The dipole is invariant under the gravitational field. The R-wave is the
most elegant form of the CFT because it is the most general of the three
CFT formulations. This generalization of the R-wave is significant because
it allows us to construct models that are the direct descendants of the CFT.

In this section we will discuss the R-wave in two ways. First we will
provide a systematic approach to the R-wave of the CFT. The second method
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