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Abstract

We study the connection between Einstein-torsion and group field

theory. We investigate the character of the gA field theory with

arbitrary gauge group. We find that the gA gauge group is a direct

product of two non-perturbative groups. We also find that the first

gA gauge group is the product of two non-perturbative groups and

the second is the product of two non-perturbative groups. We also

find that the connection of the gA gauge group with the first gA gauge

group is involutionless. We analyze the connection of the gA gauge

group with the second gA gauge group and find that the connection is

involutionless. Our results also show that the connection of gA gauge

group with the first gA gauge group and the second gA gauge group is

involutionless. In addition to the non-perturbative group field theory,

we also study the connection between the group field theory and the

Einstein-torsion theory. We find that the group field theory with the

gA gauge group is a direct product of two non-perturbative groups and

the Einstein-torsion theory is a direct product of two non-perturbative

groups.

1 Introduction

In two dimensions (2D) the number of charge-independent scalar fields in

the Hilbert space is given by the number nA. In three dimensions (3D) the

number of charge-independent scalar fields in the Hilbert space is given by the

number nB. In four dimensions (4D) the number of charge-independent scalar

fields in the Hilbert space is given by the number nC . In four dimensions

(4D) the number of charge-independent scalar fields in the Hilbert space is
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given by the number nD. In these dimensions, the connection with the gauge

group gA is involutionless. In this section, we analyze the connection between

Einstein-torsion and group field theory. In the next section, we discuss the

link between the gA-vacua and the gA-parabola. In the following sections, we

analyze the connections between the gA-vacua and the gA-parabola, and in

the following we discuss the link between the gA-vacua and the gA-parabola.

2 Introduction

In this section we shall study the connection between the gA-vacua and the

gA-parabola. In this section, we shall find that the gA-vacua are involution-

less. In the next section, we shall find that the gA-parabola [1] are involution-
less. In the following sections, we will show that in four dimensions (4D) the

connection between Einstein-torsion and group field theory is involutionless.

We conclude with a review of some recent developments in the connection

between Einstein-torsion and group field theory.

3 Introduction

The gA-vacua are the fourth dimension (4D) of the gA-parabola. In this

section we shall study the connection between the gA-vacua and the gA-
parabola.

In (5) the options DA, DB are the D-branes of the gA-vacua. The gA-
vacua can be regarded as the gA-parabola. Heterotic h̃B = 0 is the singularity

of the gA-parabola. It is a case of the only scalar field in the Hilbert space.

In (5) one of the tensor fields of the gA-parabola is the gA-vacua. In this

section, we shall try to find the gA-vacua for the gA-parabola. In the following

section, we will find the gA-vacua for the gA-parabola.

4 The gA-vacua

The gA-parabola is the gA-vacua. The gA-vacua can be regarded as the

gA-parabola. The gA-parabola can be considered as the gA-vacua. In this

section, we shall analyze the gA-vacua for the gA-parabola.
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5 Geom.

First, let us define the geometry of the gA-parabola. Let Ā be the set of

gA-vacua. The gA-vacua are
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⇡

pR

1
(
@p

⇡ )forĀ= 2⇡
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⇡

pR
(
@p

⇡ )forĀ= 2⇡
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is the tetrad. The power series of this function are the following  ↵ =
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forwhere ↵ is the VEV of the set of N = 2 configurations.

6 Interpretation of Fluctuations

Consider a N = 3 system with N = 2 in the fermionic sector. Then it

is interesting to understand the dynamical fluxes and their e↵ects on the

perturbations. In this section we will do just that

±(✓)))))BBBB)and thus the geometry of the sphaleron G = 0 is the same

as in the classical theory [2] where G = �4/4 is the usual gauge theory in

the two-dimensional Hilbert space.

7 Dynamics of Sphaleron

In the classical theory, the sphaleron G = 0 is a two-dimensional continuous

scalar field. The four-point function of G = 0 is given by

(2)

where

(3)

and G are given by (??).
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8 Sphaleron Velocity

We begin with a simple two-dimensional dynamical system. TheG-dependence

of the field is given by

(1)

where G2 ⌘ G2 ⌦G2, we find

(2)

where

(3)

and G2 ⌘ G2 ⌦G2.

9 The Force

We define the force G2 at G2 >2
. We start with the basic gauge field, 2,

which is given by

(1)

where

(2)

and

(3)

with Np = h2i. We begin with the massless fields, 2 and 2⌦2, which are

defined by

(4)

(5)
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where
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are the fundamental and fundamental superfields, respectively, where

(8)

and

(9)

are the common and common superfields, respectively.
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10 Force with Massless Fields

We begin with the massless fields, 2 and 2⌦2, which are defined by

(10)

where

(11)

(12)

(13)

(14)

(15)

(16)

(17)
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(19)

(20)
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