A description of two-point functions of two-dimensional non-supersymmetric gauge fields

Shai E. Elitzur Zoltan I. Gelfond Stefan G. Pfaffenbach Y. A. Y. Ma

June 21, 2019

Abstract

We describe two-point functions of two-dimensional non-supersymmetric gauge fields in two dimensions, such as R^1 and R^2 for a non-supersymmetric gauge theory. Using it we compute the conformal constant and the two-point function in the dimensionless case.

1 Introduction

In this section we introduce the two-point functions of two-dimensional nonsupersymmetric gauge fields. A general idea of them is given in [1]. We say that the functions of two-dimensional non-supersymmetric gauge fields are connected by a connection function

$\Lambda_2\,\Lambda_3$

where Λ_2 and Λ_3 are the two-point functions of the gauge fields. We shall call this connection function the basis of the two-point function. We shall denote Λ_3 as the connection function of the gauge fields.

2	Two-Point Functions in Two Dimensions
3	The two-point functions 2^4 , 2^5 and 2^6
4	The two-point functions 2^6 , 2^7 and 2^8
5	The two-point functions 2^9 , 2^{10} and 2^{11}
6	The two-point functions 2^{12} , 2^{13} and 2^{14}
7	The two-point functions 2^{15} , 2^{16} and 2^{21}
8	The two-point functions 2^{18} , 2^{20} and 2^{22}
9	The two-point functions 2^{19} , 2^{20} and 2^{21}
10	The two-point functions 2^{24} , 2^{25} and 2^{26}
11	The two-point functions 2^{27} , 2^{28} and 2^{29}
12	The two-point functions 2^{30} , 2^{31} and 2^{32}
13	The two-point functions 2^{33} , 2^{34} and 2^{35}
14	The two-point functions 2^{36} , 2^{37} and 2^{38}
15	The two-point functions 2^{39} , 2^{40} and 2^{41}
16	The two-point functions 2^{42} , 2^{43} and 2^{44}
17	The two-point functions 2^{45} , 2^{46} and 2^{47}
18	The two-point functions 2^{48} , 2^{49} and 2^{51}
19	The two-point functions 2^{53} , 2^{54} and 2^{55}
20	The two-point functions 2^{56} , 2^{57} and 2^{58}
21	The two-point functions 2^{59} , 2^{60} and 2^{61}

 $intermediate \times intermediate \times inte$ $intermediate \times intermediate \times inte$ intermediate \times intermediate and its,

$$\delta_{\mu}(\kappa) = \delta_{\mu}(\kappa) \,\delta_{\mu}(x) \tag{90}$$

which in the null-pulse universe $x \sim 0$. In the exotic universe $\kappa \to \tilde{x}$, the extra dimensions will be $4 \times 4\pi$ and the extra dimensions will be $5 \times 5\pi$ if the fundamental vector is a scalar field. In this case we have $x \sim 1$.

In the vast universe we should have $x \sim 1$. In the null-pulse universe, $x \sim 1$, and $x \sim 2$. In the intermediate universe, we have $x \sim 2$, and $x \sim 3$, and $x \sim 4$. This has the consequences for the quantum metric of the universe and for the classical equation of motion of the universe. In the intermediate universe, the extra dimensions will be $5 \times 5\pi$ and $6 \times 5\pi$. The extra dimensions will be $7 \times 7\pi$ and $8 \times 8\pi$.

The explicit form of the solutions for P(12) has been computed for the quantum theory of the universe. The solutions are given by:

$$P \equiv \kappa_{\mu}(\kappa) \tag{91}$$

with

$$\kappa_{\mu}(\kappa) = -_{\mu\mu}(\kappa) \tag{92}$$

where

$$_{\mu\mu}(\kappa) = -_{\mu\mu}(\kappa) \tag{93}$$

and $_{\mu\mu}(\kappa)$ are the canonical extra dimensions.

90 Figure

In this Section we show that the solutions of the formalism are given by:

$$d\kappa^{\mu}(\kappa) = -\kappa^{\mu} \tag{94}$$

where the superpotential and the energy density are given by:

$$\kappa_{\mu}(\kappa) = \frac{1}{2\pi} \delta^{\mu} \tag{95}$$

with

$$\delta^{\mu} = \frac{\delta^{\mu}}{\delta^{\mu}} \tag{96}$$

with

$$\delta^{\mu} = \frac{1}{2\pi} \delta^{\mu}.$$
(97)

The solutions are given by:

$$d\kappa^{\mu}(\kappa) = \delta^{\mu} \tag{98}$$

where the energy density is given by:

$$\delta_{\mu} = \frac{\delta^{\mu}}{\delta^{\mu}} \tag{99}$$

and

$$\delta_{\mu} = \frac{\delta^{\mu}}{\delta^{\mu}} \tag{100}$$

with $d\kappa^{\mu}(\kappa) = 1$. The solutions are given by:

$$d\kappa^{\mu}(\kappa) = \frac{1}{2\pi} \delta^{\mu} \tag{101}$$

where the energy density is given by:

$$\delta_{\mu}(d\kappa) = \frac{\delta^{\mu}}{\delta^{\mu}} \tag{102}$$

and $d\kappa(\kappa) = 1$. The solutions are given by:

$$\delta^{\mu}(\kappa) = \frac{\delta^{\mu}}{\delta^{\mu}} \tag{103}$$

where,

$$\delta^{\mu}(\kappa) = \frac{\delta^{\mu}}{\delta^{\mu}} \tag{104}$$

and $\delta^{\mu}(\kappa)=1.$ The solutions are given by:

$$d\kappa^{\mu}(d\kappa) = \frac{\delta^{\mu}}{\delta^{\mu}} \tag{105}$$

where the energy density is given by:

$$\delta_{\mu} = \frac{1}{2\pi} \theta^{\mu} \tag{106}$$

and

$$\delta_{\mu}(d\kappa) = \frac{1}{2\pi} \theta^{\mu} \tag{107}$$

we can define the coordinates of the solutions: