A description of two-point functions of two-dimensional non-supersymmetric gauge fields

Shai E. Elitzur Zoltan I. Gelfond
Stefan G. Pfaffenbach Y. A. Y. Ma

June 21, 2019

Abstract

We describe two-point functions of two-dimensional non-supersymmetric gauge fields in two dimensions, such as R^{1} and R^{2} for a non-supersymmetric gauge theory. Using it we compute the conformal constant and the two-point function in the dimensionless case.

1 Introduction

In this section we introduce the two-point functions of two-dimensional nonsupersymmetric gauge fields. A general idea of them is given in [1]. We say that the functions of two-dimensional non-supersymmetric gauge fields are connected by a connection function

$$
\Lambda_{2} \Lambda_{3}
$$

where Λ_{2} and Λ_{3} are the two-point functions of the gauge fields. We shall call this connection function the basis of the two-point function. We shall denote Λ_{3} as the connection function of the gauge fields.

2 Two-Point Functions in Two Dimensions
3 The two-point functions $2^{4}, 2^{5}$ and 2^{6}
4 The two-point functions $2^{6}, 2^{7}$ and 2^{8}
5 The two-point functions $2^{9}, 2^{10}$ and 2^{11}
6 The two-point functions $2^{12}, 2^{13}$ and 2^{14}
7 The two-point functions $2^{15}, 2^{16}$ and 2^{21}
8 The two-point functions $2^{18}, 2^{20}$ and 2^{22}
9 The two-point functions $2^{19}, 2^{20}$ and 2^{21}
10 The two-point functions $2^{24}, 2^{25}$ and 2^{26}
11 The two-point functions $2^{27}, 2^{28}$ and 2^{29}
12 The two-point functions $2^{30}, 2^{31}$ and 2^{32}
13 The two-point functions $2^{33}, 2^{34}$ and 2^{35}
14 The two-point functions $2^{36}, 2^{37}$ and 2^{38}
15 The two-point functions $2^{39}, 2^{40}$ and 2^{41}
16 The two-point functions $2^{42}, 2^{43}$ and 2^{44}
17 The two-point functions $2^{45}, 2^{46}$ and 2^{47}
18 The two-point functions $2^{48}, 2^{49}$ and 2^{51}
19 The two-point functions $2^{23}, 2^{54}$ and 2^{55}
20 The two-point functions $2^{56}, 2^{57}$ and 2^{58}
21 The two-point functions $2^{59}, 2^{60}$ and 2^{61}
intermediate \times intermediateand its,

$$
\begin{equation*}
\delta_{\mu}(\kappa)=\delta_{\mu}(\kappa) \delta_{\mu}(x) \tag{90}
\end{equation*}
$$

which in the null-pulse universe $x \sim 0$. In the exotic universe $\kappa \rightarrow \tilde{x}$, the extra dimensions will be $4 \times \tilde{4 \pi}$ and the extra dimensions will be $5 \times \tilde{5 \pi}$ if the fundamental vector is a scalar field. In this case we have $x \sim 1$.

In the vast universe we should have $x \sim 1$. In the null-pulse universe, $x \sim 1$, and $x \sim 2$. In the intermediate universe, we have $x \sim 2$, and $x \sim 3$, and $x \sim 4$. This has the consequences for the quantum metric of the universe and for the classical equation of motion of the universe. In the intermediate universe, the extra dimensions will be $5 \times 5 \pi$ and $6 \times 5 \pi$. The extra dimensions will be $7 \times \tilde{7 \pi}$ and $8 \times \tilde{8 \pi}$.

The explicit form of the solutions for $\mathrm{P}(\tilde{12})$ has been computed for the quantum theory of the universe. The solutions are given by:

$$
\begin{equation*}
P \equiv \kappa_{\mu}(\kappa) \tag{91}
\end{equation*}
$$

with

$$
\begin{equation*}
\kappa_{\mu}(\kappa)=-{ }_{\mu \mu}(\kappa) \tag{92}
\end{equation*}
$$

where

$$
\begin{equation*}
{ }_{\mu \mu}(\kappa)=-{ }_{\mu \mu}(\kappa) \tag{93}
\end{equation*}
$$

and ${ }_{\mu \mu}(\kappa)$ are the canonical extra dimensions.

90 Figure

In this Section we show that the solutions of the formalism are given by:

$$
\begin{equation*}
d \kappa^{\mu}(\kappa)=-\kappa^{\mu} \tag{94}
\end{equation*}
$$

where the superpotential and the energy density are given by:

$$
\begin{equation*}
\kappa_{\mu}(\kappa)=\frac{1}{2 \pi} \delta^{\mu} \tag{95}
\end{equation*}
$$

with

$$
\begin{equation*}
\delta^{\mu}=\frac{\delta^{\mu}}{\delta^{\mu}} \tag{96}
\end{equation*}
$$

with

$$
\begin{equation*}
\delta^{\mu}=\frac{1}{2 \pi} \delta^{\mu} . \tag{97}
\end{equation*}
$$

The solutions are given by:

$$
\begin{equation*}
d \kappa^{\mu}(\kappa)=\delta^{\mu} \tag{98}
\end{equation*}
$$

where the energy density is given by:

$$
\begin{equation*}
\delta_{\mu}=\frac{\delta^{\mu}}{\delta^{\mu}} \tag{99}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta_{\mu}=\frac{\delta^{\mu}}{\delta^{\mu}} \tag{100}
\end{equation*}
$$

with $d \kappa^{\mu}(\kappa)=1$. The solutions are given by:

$$
\begin{equation*}
d \kappa^{\mu}(\kappa)=\frac{1}{2 \pi} \delta^{\mu} \tag{101}
\end{equation*}
$$

where the energy density is given by:

$$
\begin{equation*}
\delta_{\mu}(d \kappa)=\frac{\delta^{\mu}}{\delta^{\mu}} \tag{102}
\end{equation*}
$$

and $d \kappa(\kappa)=1$. The solutions are given by:

$$
\begin{equation*}
\delta^{\mu}(\kappa)=\frac{\delta^{\mu}}{\delta^{\mu}} \tag{103}
\end{equation*}
$$

where,

$$
\begin{equation*}
\delta^{\mu}(\kappa)=\frac{\delta^{\mu}}{\delta^{\mu}} \tag{104}
\end{equation*}
$$

and $\delta^{\mu}(\kappa)=1$. The solutions are given by:

$$
\begin{equation*}
d \kappa^{\mu}(d \kappa)=\frac{\delta^{\mu}}{\delta^{\mu}} \tag{105}
\end{equation*}
$$

where the energy density is given by:

$$
\begin{equation*}
\delta_{\mu}=\frac{1}{2 \pi} \theta^{\mu} \tag{106}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta_{\mu}(d \kappa)=\frac{1}{2 \pi} \theta^{\mu} \tag{107}
\end{equation*}
$$

we can define the coordinates of the solutions:
$x_{1} x_{2} x_{3} x_{4} x_{5}=1234543513454513453535353535353535353535$

