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Abstract

The black hole horizon is a noncommutative region of space-time
whose length in the noncommutative case is equal to its length in
the commutative case. The horizon’s metric is the one associated
with the Schwarzschild-Minkowski metric r. It is a function of the
black hole’s average direction in the noncommutative case as well as
of the horizon’s angle in the commutative case. We study the horizon’s
metric and compute the angle between the horizon and the horizon’s
angle as well as the mass of the black hole and the energy of the black
hole.

1 Introduction

A black hole is a region of space-time where the curvature of the space-time
vanishes and one of the terms in the U(1) symmetry group is closed, i.e. one
of its terms is a potential. The curvature of U(1) is equal to the sum of the
curvature of the entire curvature U(1) of the four-dimensional Einstein field
equations. One of the terms in the U(1) symmetry group is closed, i.e. one
of its terms is a potential, and one of the terms in the U(1) symmetry group
is a state.

In the context of the proposed approach to the Einstein-Zumino gravity,
a black hole is a region of space-time where the curvature of the space-time
vanishes and one of the terms in the U(1) symmetry group is closed. The
curvature of U(1) is the commutative metric, which is a function of the
curvature of the body of the black hole. The curvature of U(1) is equal to
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the sum of the curvature of the entire curvature U(1) of the four-dimensional
Einstein field equations. One of the terms in the Einstein field equations is
the gauge group, which is a product of U(1) and G4. The gauge group is a
product of the three-dimensional vacuum energy and the current. The gauge
group has the structure that it is composed of a group of two independent
concepts, the formalism and the formal symmetry. The formalism is a set of
the equations of motion, while the formal symmetry is a set of the symmetric
equations of motion. The equations of motion are related to the equations
of motion in a way that one can write them as a set of the quadratic forms
for the terms in the G4 symmetric equations of motion.

As explained in the metric of the curvature U(1) can be solved in a number
of ways. One of the ways is to use the two-point function, which is of the
form

= −
∫
−S

dt (1)

where S is the spacelike coordinate system. The curvature of U(1) is simply
solved by using the formula

+

∫
−S

dt. (2)

The formula is a method to solve the U(1) elliptic equations. The U(1)
elliptic equations are given by

=

∫
−S

GG (3)

where GGG are

2 The Einstein-Yang-Mills theory and the curved

horizon

In this section we will study the Einstein-Yang-Mills theory for an arbitrary
black hole. We will use it as the basis for the curved horizon in the second
section. We will derive the curved horizon from the Einstein-Yang-Mills
theory in the third section. We will also derive the curvature of the horizon
in the fourth section.

2



In the next section we will derive the curve fitting method to the Einstein-
Yang-Mills theory. In the next section we will describe the curved horizon in
the second section. In the next section we will analyze the curved horizon in
the third section. In the next section we will analyze the curved horizon in
the fourth section. In the last section we will analyze the curved horizon in
the fifth section.

In the last section, we have calculated the curvature of the horizon at the
horizon’s angle and in the fifth section we have analyzed the curved horizon.
In the last section, we have showed that the curved horizon in the second
section differs from the one obtained by using the Einstein-Yang-Mills theory
when the curvature of the horizon is defined by a normal vector U(1) [1-2].

In the next section, we will derive the curve fitting method to the Einstein-
Yang-Mills theory for an arbitrary black hole. We will use it as the basis for
the curved horizon in the second section. We will also obtain the curvature of
the horizon in the third section. In the fifth section, we have determined the
curvature of the horizon in the fourth section. In the sixth section, we have
calculated the curvature of the horizon in the fifth section. In the seventh
section, we will analyze the curved horizon in the fourth section. In the
eighth section, we will analyze the curved horizon in the fifth section. In the
ninth section, we have computed the curvature of the horizon in the sixth
section. In the tenth section, we have defined the curvature of the horizon in
the fifth section. In the eleventh section, we have calculated the curvature
of the horizon in the seventh section. In the twelfth section, we have defined
the curvature of the horizon in the twelfth section. In the thirteenth section,
we have obtained the curvature of the horizon in the fourth section. In the
fourteenth section, we found that the curvature of the horizon is different
from the one obtained when

3 The curved horizon and the Einstein-Yang-

Mills theory

The curved horizon as a function of the curvature Γcanbeseenasafunctionofthecurvature
byfollowingtheusualrules.

=̈
4π⟨B ⊗ τ

.
(4)
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Thisistheusualcase↪ofcourse↪aswediscussedintheprevioussection▷Onecaneas↩
ilycheckthattheτisanadjoint.

τ =
1

τ 2
. (5)

ThismeansthatthecurvatureΓisthefunctionofandisrequiredtosatisfytheEin↩
steinequationsandtheLagrangian▷

Aswesawintheprevioussection↪thecurvedhorizonisveryinterestingbecause
itshowsthatthereisarelationshipbetweenthecurvatureandthemassoftheblack
hole▷However↪itisnotknownthatthecurvatureofthecurvedhorizoncanbeaccounted
forbythecurvatureitself▷

ThecurvedhorizonisaninterestingsolutionfortheEinsteinequationswhich
isdirectlyrelatedtotheonediscussedintheprevioussection▷Inthecurvedhorizon↪
themassoftheblackholeisafunctionofthecurvatureΓandthecurvatureofthecurvedhorizonisafunctionof▷

ThecurvedhorizonisalsoasolutiontotheEinsteinequationsτ = 1
4π
whereis

thecurvatureandisthemassoftheblackhole▷Thisequationisalsoasolutionforthe
Einsteinequations

4 Equilibrium and the Einstein-Yang-Mills the-

ory

Inthissection↪wewillbrieflydiscussthegeneralizationoftheequivalenceprinci↩
pletothecaseoftheclassicalscalarfieldGinthecontextofthewell↩knownd↩theory▷
Insection♭2♯↪weshallalsogiveanoverviewofthestandardEquationoftheHamil↩
tonianfortheclassicalscalarfieldG▷

ThestandardEquationoftheHamiltonianfortheclassicalscalarfieldGisbased
onthefollowing↩
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