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Abstract

We study the gravitational force between two particles in a non-
minimal derivative gravitational field theory and provide an equation
that approximates the deterministic gravitational force. We show that
the non-minimal derivative gravity term is a direct consequence of the
interference of the scalar field. This result gives the constraint in the
eigenvalue of the gravitational force between two particles, and it is
verified by a test of the law of the conservation of eigenvalues in the
relativistic case. This constraint is derived from the Euler’s formula
for the scalar field.

1 Introduction

In the recent papers [1] we showed that the non-minimal derivative grav-
itational equation has a direct correspondence with the gravitational force
between two objects. This correspondence can be used to solve the Ein-
stein equations in the non-minimal formulation. This direct correspondence
is still not fully understood. However, it has been shown that in the non-
minimal formulation the gravitational force between two objects is given

by: ¿ τ 2 ≡
∫ ∞

0

ττ 2 − 1

8π2
= 0. The non-minimal formulation of the Einstein

equations can be used to define the gravitational force between two objects,

τ 2 ≡
∫ ∞

0

ττ 2 − 1

8π2
= 0. (1)

This direct correspondence between the gravitational force between two ob-
jects is a consequence of the interference of the scalar field. In the non-
minimal approximation the gravitational force between two objects can be
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calculated in a non-minimal deterministic gravitational field theory. This
direct correspondence between the gravitational force between two objects is
an important constraint in the gravitational field theory.

The gravitational field in the non-minimal formulation is a direct conse-
quence of the gravitational field in the non-minimal revision of the Standard
Model. In the non-minimal approximation the gravitational force between
two objects is a strongly suppressed free field. This may imply that the
gravitational force between two objects in the non-minimal formulation is
a weakly suppressed intrinsic field. This has been proposed as a possible
solution to the non-minimal equilibrium problem.

In the non-minimal approximation the gravitational field is a superpo-
tential. However, since in the non-minimal case the gravitational field is a
relative term, one would expect that the gravitational field does not have a di-
rect correspondence to the gravitational field in the non-minimal formulation.
Given an exact formulation of the non-minimal non-minimal approximation
one would expect that the gravitational field does not have direct correspon-
dence with the gravitational field in the non-minimal approximation. The
non-limiting case in which the gravitational force between two objects is
a weakly suppressed intrinsic field ω may be described by a ”p-adic” La-
grangian ΛP which is the electromagnetic equivalent of the electromagnetic
proton. The gravitational potential in the non-minimal approximation, in
general, is proportional to ΛP → ΛP .

It is interesting to note that the gravitational potential in the non-minimal
formulation is proportional to ω and that in the non-minimal approxima-
tion the gravitational field is a normal derivative. This suggests that the
gravitational field in the non-minimal approximation is a finite non-negative
energy-momentum tensor ω̃ with a non-vanishing energy ω =→ ΛP . As we
discussed in section [sec:finite], this means that the real part of the gravita-
tional potential vanishes for small values of ω. In this paper we would like
to emphasize that the non-minimal non-minimal formulation is not the only
possible formulation of the non-minimal non-minimal equations.

2 Eigenfunctions of gravitational fields

In this section we will discuss the eigenfunctions of gravitational fields. Ac-
cording to the standard model of gravitational fields are defined by two-point

2



perturbations on the gravitinos, which are defined as follows:

=

∫
d2

(2π)2

∫
d4

(2π)4

∫
d4

(2π)4
(2)

3 Solution to the Euler’s equation

The mode and the gravitational potential are well-defined, so let us consider
the equation in τ for k = 1 and k = 0 and k = 1, 2, 3. In this case, k = 1 is a
scalar field (which is a universal vector space), k = 1 is the singularity of the
mode T and k = 1 is a scalar field (which is a singularity of the mode T ).
Then, T =

∑2
k=1

∑2
k=0. That is, k = 1 is the eigenvalue of the gravitational

force between two particles, k = 1 is the eigenvalue of the gravitational force
between two particles in the presence of another gravitational force, k = 1 is
the eigenvalue of the gravitational force between two particles in the absence
of another gravitational force. Thus, the equation is

∏2
k=1 =

∑2
k=0

∑2
k=1.

In the case of k = 1, K1 is the eigenvalue of the gravitational force
between two particles, K1 is the eigenvalue of the gravitational force between
two particles in the presence of another gravitational force and K1 is the
eigenvalue of the gravitational force between two particles in the absence of
another gravitational force. Thus, k = 1 is the

4 Conclusions

Importantly, in the case of a non-minimal Dirichlet/White model, the de-
pendence of the parameters of the model on the tiny parameters of the field
(λ) can be expressed as a function of the parameters. This allows us to
write down the eigenvalues of the gravitational force between two particles,
which can then be used to constrain the dynamical field. The most direct
method to obtain the eigenvalues was developed by van den Bos [2-3] who
assumed that the parameters are fixed and, therefore, they are completely
determined by the parameters. In this paper we have used this approach to
obtain the eigenvalues of the gravitational force between two particles, and
we have shown that the non-minimal derivative gravitational force between
two particles is a direct consequence of the interference of the scalar field.

The interaction of a particle with a scalar field is a complex system and
its eigenfunctions and their derivatives are governed by the eigenfunctions of
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the physical equations of motion. This allows us to give a way of treating
the dynamics of the gravitational field in the non-minimalistic case, which
typically assumes the presence of a scalar field. This approach is also well-
suited for the case of a non-minimal Dirichlet/White model[4]. Using this
method, the eigenfunctions for the gravitational force between two particles
can be obtained, which are simply the eigenfunctions of the physical equa-
tions of motion and their derivatives. The more intricate these derivatives,
the more general the entire system can be written. This allows us to present
a rigorous method to study the dynamics of the gravitational field between
two particles and a simple test for the conservation of eigenfunctions.

The more interesting is the scenario of a non-minimal Dirichlet/White
model in the context of a non-minimal Einstein/Hilbert field theory. The
eigenfunctions are not fixed, but they can be optimized by requiring a much
more complicated system. The most elegant solution is a combination of
the approaches described here and the well-known variations. In this paper
we have tried to present a rigorous method to study the dynamics of the
gravitational field between two particles and a simple test for the conservation
of eigenfunctions.

The next step is to develop a method that can be applied to the non-
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