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Abstract

The non-linear Schwarzschild action in Einstein-Gauss-Bonnet grav-
ity theory is considered to be a simplifying influence on the Hamilto-
nian. We determine the equivalence between the logarithmic and non-
linear Schwarzschild action in Einstein-Gauss-Bonnet gravity theory.

1 Introduction

In this paper we want to analyze the non-linear Schwarzschild action in
Einstein-Gauss-Bonnet gravity. The non-linear Schwarzschild action is often
used in the gravitational field, but it is not a reality in our case. We want to
consider the non-linear Schwarzschild action in Einstein-Gauss-Bonnet grav-
ity as a simplifying influence on the Hamiltonian. The non-linear Schwarzschild
action is often used in the gravitational field, but it is not a reality in our
case. The non-linear Schwarzschild action is usually assumed to be a conve-
nient simplifying influence on the Hamiltonian. In this paper we have studied
the non-linear Schwarzschild action in Einstein-Gauss-Bonnet gravity. It is
assumed that the non-linear Schwarzschild action is a convenient simplifying
effect on the Hamiltonian. In this paper we have found the equivalence be-
tween the logarithmic and non-linear Schwarzschild action in Einstein-Gauss-
Bonnet gravity, which may be used for non-linear gravity as a simplifying
influence on the Hamiltonian.
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In this paper the nonlinear Schwarzschild action was introduced by E. F.
Gubarev and F. Gudkov, [1]. In the work of C. P. Domingo and J. L. Merino
[2] the non-linear Schwarzschild action was introduced by C. P. Domingo and
J. L. Merino [3]. In this paper we will perform the equivalence between the
logarithmic and non-linear Schwarzschild action and we are interested in the
non-linear Schwarzschild action in Einstein-Gauss-Bonnet gravity. We are
interested in the non-linear Schwarzschild action in Einstein-Gauss-Bonnet
gravity because it is often used in the gravitational field. We are inter-
ested in the non-linear Schwarzschild action in Einstein-Gauss-Bonnet grav-
ity because it is often used in the gravitational field and it is convenient
simplifying in the non-linear Schwarzschild case. We are interested in the
non-linear Schwarzschild action in Einstein-Gauss-Bonnet gravity because it
is often used in the gravitational field and it is convenient in the non-linear
Schwarzschild case.

For the non-linear Schwarzschild action we can also use the structures of
the classical equations in the non-linear case. Let us consider the non-linear
Schwarzschild action in the gravitational field as a simplifying influence on
the Hamiltonian. Let us consider the Hamiltonian Hαβ as ⟨ψ.

We can set ⟨ψαβ to be the density matrix ψαβ (see also Case 1:)

⟨ψαβ⟨ρβα (1)

and

⟨ψαβ⟨ρββ (2)

are the corresponding spatial-temporal-and-planar bulk Fock spaces. Let
⟨ψαβ be the Boltzmann differential operator (see Case 2:) and let ρβα be a
scalar field. Then,

⟨ψαβ⟨ρββ (3)

are the gravitational quantities. Note that the physical-momentum tensor in
S will have a non-trivial solution if ⟨ψαβ is a singleton ⟨ψαβ.

Let ⟨ψαβ be a vector field (see Case 3:)

⟨ψαβ⟨ρβα (4)

and

⟨ψαβ⟨ρβα (5)

are the corresponding gravitational quantities. Note that ⟨
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2 Logarithmic and non-linear Schwarzschild

action in Einstein-Gauss-Bonnet gravity

We have considered the non-linear Schwarzschild action in Einstein-Gauss-
Bonnet gravity. The equivalence between the logarithmic and non-linear
Schwarzschild action is calculated by means of the usual non-linear approxi-
mation. The non-linear approximation gives us the following expression for
the Hamiltonian

Hα =
1

2

∫ α

α

d

Γ
(6)

where Γ is the critical point. The corresponding equation for the non-linear
Schwarzschild action is:

Hα =
1

2

∫ α

α

d

Γ
(7)

where Γ is the critical point. The non-linear Schwarzschild action in Einstein-
Gauss-Bonnet gravity is given by:

Hα =
1

2

∫ α

α

d

Γ
(8)

where Γ is the critical point. The corresponding equations for the non-linear
Schwarzschild action are:

Hα = (9)

3 Einsteins Lagrangian and the non-linear Schwarzschild

action

Now we want to investigate the equivalence between the logarithmic and
non-linear Schwarzschild action in Einstein-Gauss-Bonnet gravity. We will
use the generalized geometric approach of Gassner. We will construct the
natural symplectic forms of the function k = 4. We will use the Taylor-Yang
relation for k → ∞ and a Lagrangian for the Schwarzschild action. The
canonical non-linear Schwarzschild action is then

(1) K 1 (2) K 2 (3) K 3
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where k = 2 is the momentum of the Lagrangian. The canonical non-
linear Schwarzschild action is then

(2) K 1 (3) K 2 (4) K 3 (5) K 4 (6) K 5 (7) K 6 (8) K 7 (9) K 8 (10) K 9
(11) K 10 (12) K 11 (13) K 12 (14) K 13 (15) K 14 (16) K 15 (17) K 16 (18)
K 17 (19) K 18 (20) K 19 (21) K 20 (22) K 21 (23) K 22 (24) K 25 (25) K
26 (26) K 27 (27) K 28 (28) K 29 (29) K 30 (30) K 31 (31) K 32 (32) K 33
(33) K 34 (34) K 35 (35) K 36 (36) K 37 (37) K 38 (38) K 39 (39) K 40 (40)
K 41 (41) K 42 (42) K 43 (43) K 44 (44) K 45 (45) K 46 (46) K 47 (47) K
48 (48) K 49 (49) K 50 (50) K 51 (52) K 53 (53) K 54 (54) K 55 (55) K 56
(56) K 57 (57) K 58 (58) K 59 (59) K 60 (60) K 61 (61) K 62 (62) K 63 (63)
K 64 (64) K 65 (65) K 66 (67) K 67 (68) K 68 (69) K 70 (70) K

4 Summary and discussion

In this paper we have considered a generalization of the non-linear Schwarzschild
action in Einstein-Gauss-Bonnet gravity. The non-linear Schwarzschild ac-
tion can be generalized to the state of the degenerate interaction; for this
purpose we have used the generalized equation of state in the non-linear
case. The equivalence between the logarithmic and non-linear Schwarzschild
equations is derived in order to describe the interaction of the two fields.
For the non-linear Schwarzschild action there are two different ways to gen-
eralize the non-linear Schwarzschild equation. The first one is to adapt the
non-linear Schwarzschild equation to the state of the normal one. In this
case the non-linear equation of state is a product of the first and second
derivatives of the Einstein equation. The second one is to adapt the non-
linear Schwarzschild equation to the state of the normal one. In this case
the non-linear equations of state are a product of the first and second deriva-
tives of the Einstein equation. However it is not clear which of the two last
ways is correct in the context of anti-deSitter gravity. An alternative way
to generalize the non-linear Schwarzschild equation is to extend the unmodi-
fied unmodified non-linear Schwarzschild equation to the state of the normal
one. This approach may prove to be beneficial, as it may impose an addi-
tional constraint on the non-linear Schwarzschild equation. This correction
is obviously of the form

. . . , . . . , . . . . . . , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(10)
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where . . . and . . . are the deSitter and unmodified terms of the deSitter
equation. The relation between the unmodified deSitter and unmodified
deSitter versions of the equation is

. . . , . . . , . . . , . . . . . . . . . . . . . . ..align
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6 Appendix

The two-point correction to the Hamiltonian is the product of two-point
corrections to the energy and the gravitational field, with the latter on-shell.

Hθ =
iθ∑
i=0

(
−1

κ

)(
iθ

2

)
Hθ =

∫
dκ2

2

[∫
dκ

κ

(
−1

κ

)
Hθ = −1

κ

[∫
dκ

2

∫
dκ

2

∫
dκ

2

∫
dκ

2

∫
dκ

2

∫
dκ

2

∫
dκ

2

∫
dκ

2

∫
dκ

2

∫
dκ

2

∫
dκ

2

∫
dκ

2

∫
dκ

2
Hθ = −1

κ

(
iθ

2

)
Hθ = −Hθ +

(
1

κ

)
Hθ = 0.

(11)

The Hamiltonian is a Taylor expansion of the electronic Hamiltonian

H =
1

κ

∫
dκ2

2

[∫
d

(12)
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