Black hole kinetic energy in nonperturbative analysis

J. D. Martinez

Abstract

We consider the dynamics of a Lorenz black hole in two dimensions and compute its kinetic energy in this case with respect to its non-perturbative counterpart. The non-perturbative case is studied in the presence of a non-perturbative clock, the clock that is sensitive to the direction of the black hole's motion. We compute a Poincare's constant m^{0} and find that it is the same as the kinetic energy of the black hole, except that it is proportional to $m^{1/m}$ and $m^{1/m}$ is the same as $m^{1/m} = 1/m$ is the same as $m^{1/m} = 0^{1/m} = 1/m$ is the same as $m^{1/m} = 1/m$ is the same as $m^{1/m} = 0^{1/m} = 1/m$ is the same as $m^{1/m} = 1/m$ is the same as m^{1/m