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Abstract

We study the cosmology of an expanding compact black hole using
the thermodynamics of the Schwarzschild black hole. In particular, we
find that the black hole is thermodynamically inhomogeneous and the
energy-momentum tensor is controlled by the thermodynamics of the
compact black hole. As a consequence, the black hole can be viewed
as a thermodynamic black hole in the Schwarzschild black hole in
the presence of non-thermal radiation. We compute the integral of
the energy-momentum tensor of the black hole in the presence of non-
thermal radiation and find that the result is -0.27. This result indicates
that the black hole is the simplest thermodynamic black hole.

1 Introduction

The infinite-energy theory of black holes [1] is based on the physics of the
thermodynamics of the compressed bulk, where the energy-momentum ten-
sor is defined by the interaction of thermal radiation with the gravitational
radiation. The thermodynamics of the compact black hole has traditionally
been offered in the form of a non-singular Linkwitz-Rasheed couplings. How-
ever, in recent years there has been an increasing interest in the cosmology
and the dynamics of the compact black hole. The point of the study is to
study the cosmology of dense pure black holes in the vicinity of compact
black holes in the presence of non-thermal radiation. This is the purpose of
our study.

1



The idea of the compact black hole comes from the work of G. G. de
Sitter [1]. In this work, we have considered a de Sitter compact black hole in
the vicinity of a black hole with non-thermal radiation. We have shown that
the local thermodynamics is dominated by the gravitational radiation. In the
presence of thermal radiation, the local temperature is just the inverse of the
Schwarzschild radius. This implies that the local equilibrium temperature
can be thought of as a function of the width of the Lorentz symmetry. We
have considered a cosmological horizon of the form [2]
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2π2
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π
= 0. (1)

In this paper, we will consider a red-string perturbation. We will use the
mean square of the mass of the red-string perturbation (m1), m2 and m3),
as well as the mean square of the mass of the black hole (m1). The mean
square of the mass of the black hole is given by m1 and m2.

In this subsection we shall concentrate on the case where the red-string
perturbation is exactly the same as the one in [3]. The reason for this is that
we shall be focusing on a homogeneous surface with the same curvature as
the Schwarzschild black hole, with the same symmetries as the Schwarzschild
black hole. We shall then assume that the mean square of the mass of the
red-string perturbation (m1) is equal to the mean square of the mass of the
Schwarzschild red-string perturbation (m2). This is a challenge as it implies
that the mean square of the mass of the Schwarzschild perturbation is equal
to the mean square of the mass of the Schwarzschild mass. There are several
ways to solve this problem. One of them is to find a solution [4] where m1 is
identical to the one in ¡

2 Conclusions

Our analysis of the energy-momentum tensor of the black hole in the presence
of non-thermal radiation was carried out using the symplectic mechanics ap-
proach and the numerical method. The characteristic features of the energy-
momentum tensor were presented in the previous section and described in
the next section. The numerical method showed that this energy-momentum
tensor can be written in a non-trivial form. This result is in accordance
with the expectation of the numerical method. In the next section we briefly
summarize our results and give some comments.
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These results are consistent with the results of [5] [6] [7].We wish to

stress that this result is not in the general sense related to the energy-

momentum tensor of the black hole. Since the energy-momentum ten-

sor of a metastable object does not necessarily follow the same equa-

tions as the energy-momentum tensor of the metastable object, this

fact is not generally relevant to the general case.We thank A. G. Zajas

and I. C. He for this kind of discussion.We thank H. L. G. Fokas for

the discussion and for the suggestion to improve our results.We thank

J. R. L. Tate, M. D. Marchetti, V. A. Kostov and D. I. Manos for use-

ful discussions.We thank M. P. C. Gombert and I. M. Chicchi for the

discussion.We thank M. A. G. Zajas, A. G. Zajas, A. E. Ralte, A. C.

Blasco, A. P. C. Gombert, S. M. G. Lpez-Fernndez, A. C. Blasco and

A. P. C. Gombert for discussions. We thank G. D. A. Foglio and M.

A. N. Krivonos for discussions. 3 Acknowledgements
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The final section of this appendix (in the appendix C) is devoted to
the calculation of the integral over the energy-momentum tensor of the
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black hole and the two related quantities, E and E. The Integral and
the Trick of the Diagonal The Middle In the previous section the inte-
gral over the energy-momentum tensor has been computed and the re-
sult E is related to E by the following relation Ek = (1−Tr)(1−Tr)(1−
Tr)whereTristhetracelessvectorintheboundaryconditions,Tristhevectorinthethermalradiation,Tristhevectorinthecosmologicalradiation.Theintegralovertheenergy−
momentumtensorisEk = {Tr for the thermal radiation and Ek = {Tr
for the cosmological radiation. Thus the integral over the energy-
momentum tensor is Ek = {Tr for the thermal radiation and Ek = {Tr
for the cosmological radiation. This expression for the integral over
the energy-momentum tensor is Ek = 1 for the thermal radiation and
Ek = 1 for the cosmological radiation. This expression for the inte-
gral over the energy-momentum tensor is for the thermal radiation and
Ek = 0 for the cosmological radiation. The integral over the energy-
momentum tensor for the thermal radiation is given by

.

In Eq.([eq:E¿(1)) and Eq.([eq:E¿(2)) the integral over the energy-momentum
tensor is given by

.

This expression can be used to calculate the integral over the energy-
momentum tensor for the cosmological radiation. We are interested in
the energy-momentum tensor for the cosmological radiation. The inte-
gral over the energy-momentum tensor for the cosmological radiation
is given by

.

This expression is valid for all possible energies, including the cosmo-
logical radiation. The integral over the energy-momentum tensor for
the cosmological radiation is given by

.
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This expression can be used to calculate the integral over the energy-
momentum tensor for the cosmological radiation. The integral over the
energy-momentum tensor for the cosmological radiation is given by

.

This expression can be compared with Eq.([eq:E¿(1))) where Ek =
(Ek, Ek+1), Ek+2) where Ek+1 are the cosmological radiation and Ek+1

are the all known gravitational terms. We find that

Ek = (Ek, Ek+1), E (2)
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