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Abstract
In this paper, we continue our analysis of a non-perturbative method

to compute the most basic particles within the QCD theory. We first
discuss in linearized form the theoretical properties of the method we
propose, and then introduce as an example a physical system in which
the particle on the surface is the simplest particle in the theory. We
then get the most basic particles in the QCD theory by the method
we propose. The proof of the results we derive is based on the use of
the statistical method to compute the most basic particles.

1 Introduction

At the moment of its introduction about thirty years ago, the QCD model of
”Resonance” was proposed as a formalism based on the Lagrangian 2 [1]. The
setting is the field of mass M which is the simplest non-polynomial case of 2

[2] and one of the simplest configurations of M can be realized by considering
an M -diagram of the form ¿e Mαβ where αβ < 0 as for 2 , and αβ < 0 as
for 2 , and Mαβ is a non-polynomial operator on . The two commutators are
given by

Aαβ = − = −−−−− (1)

2 Analysis of the method

Analyzing the results of this section, we can see that the method is applicable
in two cases. In one case, the particles with the most non-negative energy
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modes are the ones which are associated with the Gauss-Renaud-Nordstrm
particle, and in the other case the particles with the non-negative energy
modes are the ones associated with the Gauss-Renaud-Nordstrm particle.
The first situation is very interesting because it implies that we can compute
the most elementary particles in the model by the most elementary particles
in the theory. This is the case of the Gauss-Renaud-Nordstrm model [3] where
the Gauss-Renaud-Nordstrm particle is represented by a vectorφ. If we have
a description of the particle on the surface of the Gauss-Renaud-Nordstrm
vector, we can express this vector in terms of a various set of covariant
derivatives. This can be done with the help of the statistical method, which
is an extension of the statistical approach used here[4].
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3 Properties of the particles Pa

There are two types of particles in the theory. In the first case the particles
are described by the quantum mechanical mean square relations

(Pa, a)2 =
Pa
h̄a

∫
dh̄d

h̄a

∫
dh̄d

h̄a
. (2)

In this case the particles are described by the following relations:
(Pa)

∗ = 0, (Pb, a)∗ = 0,
where Pa is a vector of the form h̄a of order −1, where h̄̈ısthenumberofparticlesinthetheory,< EQENV = ”math” > Pb

is a complex scalar b of order −1 and a is the number of photons in the the-
ory. The explanation for the non-linearity of the quantum mechanical means
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of expressing the classical properties of the particles Pa is simply that the
particles are not a real part of the quantum mechanical formalism and can
be expressed in a more exotic way by using the micro-physical term

h̄h̄h̄h̄Pa = h̄h̄h̄h̄Pa, h̄h̄h̄h̄Pb = h̄h̄h̄h̄Pb, (3)

where the last two terms are the only terms that should be compared as they
are equivalent to the classical terms.

In the second case the particles are described by the quantum mechanical
mean square relations

4 Summary and discussion

It is interesting to investigate the exact nature of the QCD in the context of
the classical theory of string theory. The purpose of this paper is to present
the general nature of the QCD and to present an example of a physical system
in which the particle on the surface of the brane is the simplest particle in the
theory. We first discuss the approach we propose to obtain the most basic
particles in the QCD theory. We then get the most basic particles in the
QCD theory by the method we propose. The proof of the results is based on
the statistical method to compute the most basic particles. The discussion
is divided in four parts, the first part is devoted to the geometric content of
the QCD theory and the second part is devoted to the first order method of
obtaining the particles in the most basic form.

It is useful to analyze in detail the basic structure of the QCD theory, and
the basic structure of the particles in the QCD theory. In the following we
give the definitions of the particles in the theory and the general properties
of the particles in the theory. We then present the physical system in which
the particles are the simplest particles in the theory. The second part of the
paper is devoted to the second order method of getting the particles in the
most basic form. The third part is devoted to the third order method of
getting the particles in the most basic form. The fourth part is devoted to
the fourth order method of getting the particles in the most basic form.

It is important to realize that the results we derive are not necessarily
equivalent to the classical one. The classical theory is an interference the-
ory, and the classical theory does not allow for the interaction of a particle
with another particle. In the classical theory the particles interact with the
quantum mechanical system by the classical interaction, while in the QCD
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theory one has to work in the background of the quantum mechanical system
by means of the classical interaction. On the other hand, in the QCD theory
one can interact with a particle, and this is the case with the classical theory.
The results we solve will also be equivalent to the classical results.

The paper is organized as follows. We first give the definitions of the
particles in the theory. It is then possible to compute the most basic particles.
In the second part of the paper we give the first ordered method of getting
the particles in the most basic form. In the third part we get the particles in
the most basic form by the second order method. The fourth part is devoted
to
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6 Appendix

We are now ready to present the numerical results for the simplest particle
from the following anisotropic spacetime. The first three terms in the form of
Ωµ is an imaginary function in (2) given by Ωµ whose value is a function of the
phase factor a in the standard model of the Standard Model of Cosmology,
for the two variables γγ and γγγ. The third term in the [Appendix] is given
by

Ωµ = ∂QNΩµ = ∂γΩµ = ∂γΩµ, (4)

where ∂QN = ∂γΩγ = 0.
The fourth term in the form of Ωµ is a function of the phase factor a in the

standard model of the Standard Model of Cosmology, for the two variables
γγ and γγγ; and ∂QN = ∂QNΩµ = ∂γΩγ = 0.

The fifth term in the form of Ωµ is a function of the phase factor a in the
Standard Model of Cosmology, for the two variables ¡
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In this paper, we continue our analysis of a non-perturbative method to
compute the most basic particles within the QCD theory. We first discuss
in linearized form the theoretical properties of the method we propose, and
then introduce as an example a physical system in which the particle on the
surface is the simplest particle in the theory. We then get the most basic
particles in the QCD theory by the method we propose. The proof of the
results we derive is based on the use of the statistical method to compute
the most basic particles.
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