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Abstract

In this paper, we investigate the wave function of a fast-rolling
scalar field in a general frame in the presence of a background scalar
field, and analyze the implications of this results on the relation be-
tween the wave function and the parameters of the non-perturbative
method.

1 Introduction

The first consideration of the non-perturbative method of constructing a
summary of physical theories is the realization of space-time gauge theories.
In this regard, the first major results of a non-perturbative method of con-
structing a physical theory are the description of the structure of a scalar field
and the temporality of a physical field. Such results were obtained by the
non-perturbative method in the previous work [1]. In this work, two groups
of theories were investigated: a theory with a flat geometry and a theory
with a spherical geometry. The latter is the picture usually associated with
Einstein theory [2], but which is also used in the non-perturbative method of
constructing a physical theory. Specifically, the members of the first group
were defined in the framework of a flat geometry [3], and the members of
the second group were defined in a spherical geometry [4]. This flat geome-
try was constructed by means of the following gauge symmetry group: G(¶)
[5]. In this work, the structure of a scalar field was determined by means of
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a general framework of the gauge symmetry group G. The general frame-
work contained two main components: a general physical field theory, and
a general gauge symmetry group. The analysis of the results obtained in [5]
led to the conclusion that the structure of a scalar field was determined by
means of a general physical field theory [6]. The results obtained in [7] led
to the conclusion that the structure of a gravitational field was determined
by means of a general gauge symmetry group G. The analysis of the results
obtained in [8] lead to the conclusion that the structure of a gravitational
field was determined by means of a general gauge symmetry group G. This
is the picture obtained in the recent work [5]. In this work, the structure of
a scalar field was determined by means of a general physical field theory. In
particular, we studied the structure of a scalar field in a general frame in the
presence of a background scalar field, and analyzed the implications of this
result on the relation between the wave function and the parameters of the
non-perturbative method of constructing a physical theory.

2 Introduction

2.1 How to construct a summary of physical theories

As we have already mentioned, the first consideration of the non-perturbative
method of constructing a physical theory is the realization of space-time
gauge theories. In this regard, the first major results of a non-perturbative
method of constructing a physical theory are the description of the structure
of a scalar field and the temporality of a physical field. In the prior work [1],
the structure of a scalar field was determined by means of a general framework
of the gauge symmetry group [9]. In this framework, the members of the
structure of a scalar field were defined in the framework of a flat geometry
[3], and the members of the structure of a physical field were defined in the
framework of a non-flat geometry [10]. In this work, we propose that a general
basis of real-time physical theories is the construction of a strong coupling
scalar field. In the following section, we present the general structure of a
weak-coupling scalar field.
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3 General Structure of a Weak-Coupling Model

A weak-coupling scalar field is defined by the algebra of the gauge group [9]
being a group of classes of scalar fields. As a set of scalar fields, the weak-
coupling scalar field is defined by the relaxing of the structure constraints on
the class of scalar fields. As a set of scalar fields, the weak-coupling scalar
field is defined by the existence of a coupling of the weak-coupling scalar field
to the weak-coupling scalar field. As a set of weak-coupling scalar fields, the
weak-coupling scalar field is defined by the existence of a coupling of the
weak-coupling scalar field to the weak-coupling scalar field.

In this paper, we will define a weak-coupling scalar field by the algebra
of the gauge group [9]. We will begin with a definition of the geometrical
structure of a weak-coupling scalar field. We will then go on to a definition
of the structure of the weak-coupling scalar field.

4 Definition of Strong-Coupling Scalar Field

The weak-coupling scalar field is defined by the algebra of the gauge group
[9]. It is the same algebra of the gauge group [9] as a generalized scalar
field. As a set of scalar fields, the weak-coupling scalar field is defined by
the relaxation of the structure constraints on the class of scalar fields. The
weak-coupling scalar field is a hydronic scalar field. It is defined by the
basic symmetry group [11]. The basic symmetry group [11] is a group of
classes of scalars. The basic symmetries of the basic symmetry group [11]
are the symmetries of the GZ. The basic symmetry group [11] is a group
of groups. In the present section, we will see that the commonalities of the
basic symmetries of the basic symmetry group [11] are the symmetries of the
covariant group [12], the Lie algebra group [12], and the Lie algebra group
[12]. We will also see that the basic symmetries of the basic symmetry group
[11] are the symmetries of the Lie group [12].

5 Basic symmetries of the basic symmetry

group [11]

L−1 is a Lie algebra group.
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In the present section, we will introduce the basic symmetries of the basic
symmetry group [11] which are the symmetries of the Lie algebra group [12].
We will also show that the basic symmetries of the basic symmetry group
[11] are the symmetries of the Lie algebra group [12].

6 General symmetry group [11]

P−1 is a Lie algebra group.
The basic symmetries of the basic symmetry group [11] are the symme-

tries of Lie algebra groups [12] and [13] [12]. We will also show that the
basic symmetries of the basic symmetry group [11] are the symmetries of Lie
algebra groups [13].

7 General symmetries of the basic symmetry

group [11]

P−1 is a Lie algebra group.
The basic symmetries of the basic symmetries of the basic symmetry

group [11] are the symmetries of Lie algebras [13] (??, ??) and of Lie algebras
[13]′ (??,

P−1 is a Lie algebra group.
The basic symmetries of the basic symmetries of the basic symmetry

group [11] are the symmetries of Lie algebra groups [13] (??,

P−1 is a Lie algebra group.
The basic symmetries of the basic symmetries of the basic symmetry

group [11] are the symmetries of Lie algebra groups [13] (??,

P−1 is a Lie algebra group.
The basic symmetries of the basic symmetries of the basic symmetry

group [11] are the symmetries of Lie algebras [13] (??,
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