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Abstract

We study the noncommutativity of the black hole horizon in the
presence of a scalar field. For the Higgs sector, such a noncommu-
tativity is visible to us, and it is shown that it is a constant, not an
operator. We also show that the black hole horizon becomes a non-
commutative black hole and we compute the mass and spin of the
black hole.

1 Introduction

The noncommutativity of the black hole horizon in the conditions of a quan-
tum electrodynamics (QED) model is a natural result in the light-like ap-
proximation, the one-loop superextension, where the noncommutativity of
the black hole horizon is fixed by the quantum electrodynamics. To this end,
we have studied the noncommutativity of the horizon from a quantum elec-
trodynamics (QED) perspective, and we have obtained the mass and spin of
the Higgs sector. We have computed the mass of the black hole horizon from
a noncommutative point of view.

We have investigated the noncommutativity of the horizon from a quan-
tum electrodynamics (QED) perspective. We have shown that it is a con-
stant, not an operator, and that it is a constant, not an operator,1. We have
also computed the mass and spin of the Higgs sector in the presence of a
scalar field.

In the context of quantum electrodynamics (QED), one of the most im-
portant considerations is the noncommutativity of the Higgs sector. The
noncommutativity of the horizon is one of the most useful aspects of the
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QED model, as it is able to give a priori, a better approximation, the masses
of the Higgs sector (which has the same mass as the scalar field) and the spin
of the Higgs sector,2 where

ω−1, ω−2, ω−3, ω−4, ω−5, ω−6ω−7, ω−8, ω−9ω−10ω−11ω−12ω−13 (1)

The fundamentals of the theory are not so easily understood by means of the
classical methods; the standard method of classifying the quantum states
by means of the classical methods is not available for the case of the Higgs
system. Therefore, one should look for the classical method of classifying
quantum states in the standard way, which is based on the algebraic ap-
proach[1]. One can use the classical method of classifying quantum states in
the standard way, which is based on the algebraic approach, to analyse the
quantum states of the Higgs system in the Higgs sector, where the Higgs field
is a particle with its mass M . A state of the Higgs system with its mass M
can be analysed by using the algebraic approach, using the standard method
of classifying quantum states in the standard way. In this paper we are inter-
ested in the quantum states of the Higgs system in the Higgs sector, where
the Higgs field is a particle with its mass M . The quantum states of the
Higgs system are state space independent, and can be analysed by using the
algebraic approach. The algebraic approach of classifying quantum states
follows from the following theorem. The algebraic approach to classifying
quantum states is equivalent to the classical method when one looks for the
classical method of classifying quantum states in the standard way (see also
the general theorem).

The algebraic approach to classifying quantum states is based on the
algebraic approach of classifying classical states in the standard way. The
algebraic approach is based on the algebraic approach of classifying classical
states in the standard way. The algebraic approach is based on the algebraic
approach of classifying classical states in the standard way. The algebraic
approach of classifying quantum states is based on the algebraic approach of
classifying quantum states in the standard way.

The algebraic approach to classifying quantum states is based on the
algebraic approach of classifying classical states in the standard way. The
algebraic approach is based on the algebraic approach of classifying classical
states in the standard way. The algebraic approach is based on the algebraic
approach of classifying quantum states in the standard way. The algebraic
approach is based on the algebraic approach of classifying quantum states in
the standard way.
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The algebraic approach to classifying

2 Higgs field in the above-mentioned scalar

field

If one wishes to derive the Higgs field for the above-mentioned sector, one
may begin by constructing the above-mentioned matrix of coordinates. The
matrix of coordinates used is

3 Mass and spin of the Higgs sector

We first consider the mass of the Higgs sector and the spin of the Higgs
vector. The mass and spin of the Higgs sector can be obtained from the
vector ψ and h̄ in Eq.([EQ0]) and the relation Eq.([EQ0]) with respect to the
Higgs vector h̄ is given by the following expression:

mN2 = m2 −m3 −m4m2 −m5m2 −m6m2

The mass with respect to the Higgs vector h̄ and the mass m2 is given in
Eq.([EQ0]) in Eq.([EQ0]) and is conserved under a conservation of the mass
m2/m2. The mass m2 is the real part of the mass m2 and the mass m2 is the
imaginary part of the mass m2. The mass m2 is the real part of the mass m2

and the mass m2 is the imaginary part of the mass m2.
Note that in Eq.([EQ0]) for the Higgs sector, h̄ is the Hilbert space of the

first rank quantum field theory with respect to the Higgs vector h̄. The mass
can be calculated from the vector ψ and

4 Computations with the mass gap

Since we can define the mass gap, we can compute the mass of the Higgs
sector. If we assume that the mass is constant, then the mass gap can be
computed as

MH0 =M0. (2)
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