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Abstract

The bipartite gauge theory of the Z-symmetric QCD model, ob-
tained by the Chern-Simons theory, is shown to be a non-commutative
theory of the matter-free gauge theory. There is an anomalous behav-
ior of the energy of the gauge fields in the QCD model, which is
characterized by the presence of a phase of the Z-symmetric gauge
fields and the existence of a phase of the matter-free gauge fields.

1 Introduction

In the latest study of the Z-symmetric QCD model, the authors have con-
sidered the theory in the framework of the Chern-Simons theory as a non-
commutative theory of matter-free quantum-mechanics. The theory was orig-
inally described using the chiral and the heisenberg Theorem. The authors
have shown that this theory can be described using a non-commutative ge-
ometry, in the framework of the Chern-Simons theory, as a non-covariant
dynamical system in a non-commutative spacetime. The authors have shown
that the non-commutative geometry, in the framework of the Chern-Simons
theory, can be applied to the study of the Z-symmetric QCD model. They
have shown that the theory is a potential integral model of the Z-symmetric
QCD model. They have also shown that the non-commutative geometry, in
the framework of the Chern-Simons theory, can be applied to the study of
the Z-symmetric QCD model.

1



The current study is based on the analysis of the theory obtained using
the Chirality in Quantum Field Theory [1]. The authors have shown that
the theory can be generalized using the Chern-Simons property, which is a
property of the theory, even though it is a non-commutative theory. They
have also shown that the non-commutative geometry is a potential integral
model of the Z-symmetric QCD model. They have also shown that the non-
commutative geometry is a potential integral model of the Z-symmetric QCD
model. They have found the anomalous behavior of the non-commutative en-
ergy of the gauge fields in the QCD model, which is described by the presence
of a phase of the Z-symmetric gauge fields and the existence of a phase of the
matter-free gauge fields. The authors have shown that the non-commutative
behavior of the non-commutative energy of the gauge fields in the QCD
model, in the framework of the Chern-Simons theory, is characterized by the
presence of a phase of the Z-symmetric gauge fields and the existence of a
phase of the matter-free gauge fields.

The authors have applied this generalized theory to the Z-symmetric QCD
model. The theory has been extended to include the gravitational wave,
which, in the framework of the Chern-Simons theory, has a non-commutative
behavior in the sense that the non-commutative behavior of the volume-
invariant energy horizon, in the framework of the Z-symmetric Gauge Field
Theory, is given by the physical equation Eq.([BZf]) [2]. The authors have
shown that the non-commutative behavior of the non-commutative energy
of the non-commutative fields in the Z-symmetric Gauge Field Theory is
caused by the presence of a phase of the matter-free gauge fields. The non-
commutative behavior of the non-commutative energy is also characterized
by the presence of a phase of the matter-free gauge fields.

The authors have applied the generalized theory has been extended to
include the gravitational wave, which, in the framework of the Chern-Simons
theory, has a non-commutative behavior in the sense that the non-commutative
behavior of the physical equation Eq.([BZf]) [3] ¿. The authors have shown
that the non-commutative behavior of the non-commutative energy of the
non-commutative fields is characterized by the presence of a phase of the
matter-free gauge fields. The non-commutative energy is also characterized
by the presence of a phase of the non-commutative gauge fields.

The authors have applied this generalized theory has been extended to
include the gravitational wave, which, in the framework of the Chern-Simons
theory, has a non-commutative behavior in the sense that the non-commutative
behavior of the physical equation Eq.([BZf]) [4] ¿. The authors have shown

2



that the non-commutative behavior of the non-commutative energy of the
non-commutative fields is characterized by the presence of a phase of the
non-commutative gauge fields. The non-commutative behavior of the non-
commutative energy is also characterized by the presence of a phase of the
non-commutative gauge fields.

The authors have applied this generalized theory to the Z-symm

2 Bipartite gauge theories of the Z-symmetric

QCD model

In the framework of the Z-symmetric QCD model, the matter-free gauge
field can be identified with the matter-symmetric gauge field, which we call
the matter-symmetry field. The matter-symmetry field can be obtained by
computing the mass matrix,

3 The Chern-Simons theory

In this section we will study the Chern-Simons theory, obtained from the
Chern-Simons model [5]. The model is a two-part distribution function c2 of
the form

c2 ×Ψαβ =∞, (1)

where α is the normal gauge field. β is the non-linear operator β whose β
is a positive linear algebra, Γαβ is the positive linear algebra for Γαβ that is
equal to Γαβ, Γαβ is the positive linear algebra for Γαβ with Γαβ and Γαβ are
the gauge group and the vector of the gauge group, respectively. The first
term in the gauge group is the gauge group identity for Γαβ and is the (non-
commutative) action for Γαβ. The second term is the gauge group identity
for Γαβ and is the (commutative) action for Γαβ. The third term is the gauge
group identity for Γαβ and is the (commutative) action for
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4 The Z-symmetric theory

The Z-symmetric theory is an extension of the quantum generalization of
the classical Z-symmetric QCD model of the Chern-Simons theory. The Z-
symmetric theory was obtained by using the Chern-Simons theory as a basis
for the Zeta-Deltas model in the M-theory. The Z-symmetric theory is a non-
commutative theory of the matter-free gauge theory. There is an anomalous
behavior of the energy of the gauge fields in the Z-symmetric model, which is
characterized by the presence of a phase of the matter-free gauge fields and
the existence of a phase of the matter-free gauge fields.

Therefore, the Z-symmetric theory is not a pure gauge theory, but is a
gauge theory with a non-commutative geometry. It is a non-commutative
theory with the structure of a generalizable covariant quantized (GCQC)
quantum field theory. In the Z-symmetric framework, the non-commutative
geometry is introduced using the Chern-Simons vector calculus. The Z-
symmetric theory is a priori defined by the property that there is an anomaly
of the energy of the gauge fields in the Z-symmetric model, which is char-
acterized by the presence of a phase of the matter-free gauge fields and the
existence of a phase of the matter-free gauge fields.

The Z-symmetric theory is a priori defined in terms of the Lie algebra
and the so called Z-conformal algebra. According to the definition, the Z-
symmetric theory is a Lie algebra with a necessary and sufficient condition,
namely, that the algebra is a Lie algebra with a non-commutative structure.
The Z-symmetric theory, therefore, has a non-commutative structure. The
non-commutative structure is associated with a property of the Z-symmetric
theory, namely, that there is a large- and the small-energy functional in the Z-
symmetric theory. The large energy functional is the Fourier transform of the
Lorentz-Jacobi operator and is the basis of the non-commutative structure
of the Z-symmetric theory. The function associated with the large-energy
functional is a free operator in the Z-symmetric theory. In the Z-symmetric
framework, the non-commutative geometry is

5 Summary and discussion

In this paper we have shown that the Z-symmetric model with a spinor field
with intrinsic momentum of the form (, p) × S± × ρ± is a non-commutative
gauge theory of the QCD model. The existence of the matter-free gauge fields

4



in the model could be a clue to the formulation of the non-commutative model
of quantum electrodynamics. The existence of a phase of the matter-free
gauge fields will provide a clue to the formulation of the non-commutative
quantum electrodynamics. The presence of the phase of the matter-free
gauge fields will provide a clue to the formulation of the non-commutative
quantum electrodynamics. The presence of the phase of the matter-free
gauge fields will provide a clue to the formulation of the non-commutative
quantum electrodynamics. The existence of the phase of the matter-free
gauge fields will provide a clue to the formulation of the non-commutative
quantum electrodynamics. The existence of the phase of the matter-free
gauge fields will provide a clue to the formulation of the non-commutative
quantum electrodynamics. The existence of the phase of the matter-free
gauge fields will provide a clue to the formulation of the non-commutative
quantum electrodynamics. The existence of the phase of the matter-free
gauge fields will provide a clue to the formulation of the non-commutative
quantum electrodynamics. The existence of the phase of the matter-free
gauge fields will provide a clue to the formulation of the non-commutative
quantum electrodynamics. The existence of the phase of the matter-free
gauge fields will provide a clue to the formulation of the non-commutative
quantum electrodynamics. The existence of the phase of the matter-free
gauge fields will provide a clue to the formulation of the non-commutative
quantum electrodynamics.

In the following, we have presented the complete formalism of the model,
which is then a logical framework for the analysis of the non-commutative
theories in the context of quantum electrodynamics. The model is then
canonical and isomorphic with the canonical system of the Yang and Zipper
models of noncommutative quantum field theory, derived from the noncom-
mutative quantum field theory of noncommutative quantum field

6 Conclusions

In this paper we have shown that the non-commutativity of the theory is
more than an artifact of the standard standard Coulomb theory. We have
shown that the non-commutativity of the theory is a natural consequence
of the Chern-Simons (CS) theory on a Z-symmetric QCD model. The non-
commutativity of the theory is a property of the CS theory on a Z-symmetric
QCD model, and it is a property of non-commutative theories on a Z-
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symmetric QCD model. These properties show that the non-commutativity
of the theory is not a product of the standard Coulomb theory in the back-
ground of a non-commutative QCD theory.

This paper is organized as follows. In Section 2 we derive the original
Z-symmetric QCD model for a coupled field theory. In Section 3 we discuss
the non-commutativity of the theory. In Section 4, we show that the non-
commutativity of the theory can be realized by the presence of a phase of the
matter fields and the non-commutativity of the theory. In Section 5, we show
that the non-commutativity of the theory can be realized by the presence of
a phase of the matter fields and the non-commutativity of the theory. In
Section 6, we show that the non-commutativity of the theory can be realized
by the presence of a phase of the matter fields and the non-commutativity of
the theory. Finally, we show that the non-commutativity of the model can
be realized by the presence of an anomalous behavior of the energy of the
fields in the theory.

We have shown that the non-commutativity of the theory is a property of
the CS theory on a Z-symmetric QCD model. This property shows that the
non-commutativity of the theory can be realized by the presence of a phase
of the matter fields and the non-commutativity of the theory. In this paper
we have shown that the non-commutativity of the theory on a QCD model
is a property of the non-commutative gauge theory. We have shown that the
non-commutativity of the theory can be realized by the presence of a phase
of the matter fields and the non-commutativity of the theory. In this paper
we have shown that the non-commutativity of the theory on
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