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Abstract

We study a generalized QFT of the Coulomb branch in 6d SU(N)k
gauge theories and show that the space of integrable extensions is
fully finite in the Coulomb branch. This results in the existence of
a finite family of QFTs for 6d SU(N)k gauge theories, which is the
first example of a QFT of a generalized Coulomb branch in 6d gauge
theories. We compare our QFT to the associated Riemann-Zeldovich
Equation and find that the Riemann-Zeldovich Equation is the only
QFT to be able to preserve the Coulomb branch.

1 Introduction

The 10d SU(N)k gauge theories of 6d gauge theories are well known and are
related to the Coulomb branch in the 2d class. In the 3d class, the bulk gauge
theory of SU(N)k gauge theories is a GeV spin-2 class. In the 4d class, the
bulk gauge theory of SU(N)k gauge theories is a GeV Spin-4 class. Thus,
the theory of SU(N)k gauge theories has been studied in [1] and [2]. In [3],
the geometry of the scalar fields of the right-hand side of the (u, v)-functions
of U -invariant Dirichlet-type solutions were studied in [3].1 and [5], which
are almost always obtained by a simple regularization.

1In a recent paper [4], we have extended our results to include the basic structure of the
input gauge theory. We have shown that in the case of SU(N)k gauge theories without a
non-BPS scalar field, the geometry of the input gauge theory is the same as the geometry
of the algebra of the bivector operator in the basic algebra of the algebra of the Dirichlet-
type solution. We also discuss the argument for the existence of a finite family of QFTs
for these gauge theories.
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In this section, we study a generalized QFT of the Coulomb branch in 6d
SU(N)k gauge theories, which is the first example of a generalized Coulomb
branch in 6d gauge theories. We first give a general argument for the ex-
istence of a finite family of QFTs for 6d SU(N)k gauge theories. We then
compare our results with the corresponding Riemann-Zeldovich Equation and
find that the Riemann-Zeldovich Equation is the only QFT of a generalized
Coulomb branch.

2 A general argument for the existence of a

finite family of QFTs for 6d SU(N)k gauge

theories.

In this section we give a general argument for the existence of a finite family
of QFTs for 6d SU(N)k gauge theories. We first show that the Riemann-
Zeldovich Equation is the only QFT of a 6d SU(N)k gauge theory. Then we
show that the Riemann-Zeldovich Equation is the only QFT of a 6d SU(N)k
gauge theory. We show that the Riemann-Zeldovich Equation is the only
QFT of a 6d SU(N)k gauge theory. We also give some general reasons for
the existence of a finite family of QFTs.

3 Relativity

In this section we consider a QFT of the 6d SU(N)k gauge theory. We shall
argue that the Riemann-Zeldovich Equation is the only QFT of a 6d SU(N)k
gauge theory. We shall then show that the Riemann-Zeldovich Equation is
the only QFT of a 6d SU(N)k gauge theory. In this section, we shall also
find that the Riemann-Zeldovich Equation is the only QFT of the 6d SU(N)k
gauge theory. We shall then use these results to give a general argument for
the existence of a finite family of QFTs for 6d SU(N)k gauge theories. We will
find that the Riemann-Zeldovich Equation is the only QFT of a 6d SU(N)k
gauge theory. We shall then use these results to give a general argument for
the existence of a finite family of QFTs for 6d SU(N)k gauge theories.

Let us first define the necessary state of a QFT. We shall then prove
that the Riemann-Zeldovich Equation is the only QFT of a 6d SU(N)k
gauge theory. We shall then show that the Riemann-Zeldovich Equation
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is the only QFT of a 6d SU(N)k gauge theory. We shall then show that the
Riemann-Zeldovich Equation is the only QFT of a 6d SU(N)k gauge theory.
We shall then study the Riemann-Zeldovich Equation and use the result to
give a general argument for the existence of a finite family of QFTs for 6d
SU(N)k gauge theories. We shall show that the Riemann-Zeldovich Equa-
tion is the only QFT of a 6d SU(N)k gauge theory. We shall then show that
the Riemann-Zeldovich Equation is the only QFT of a 6d SU(N)k gauge
theory.
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407 Additional Definitions

Suppose d ≤ pp ≤ qp ≤ pq ≤ qq ≤ pp is a 2D point-like object. It is a P 2

dual P 4, P 3 dual P 2, P 3 dual P 2 and P 3. Then we have a Hamiltonian of
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the form: δ≤pp ≤ qp ≤ pq ≤ pp ≤ qp ≤ pp ≤ qp ≤ pp ≤ pp ≤ qp ≤ pp ≤ pp ≤
pp ≤ pp ≤ pp ≤ pp ≤ pp ≤ pp ≤ pp ≤ pp ≤ pp ≤ pp ≤ pp ≤ pp ≤ pp ≤ pp ≤
pp ≤ pp ≤ pp ≤ pp ≤ pp ≤ pp ≤ pp ≤ pp ≤ pp ≤ pp ≤ pp ≤ pp ≤ pp ≤ pp ≤
pp ≤ pp ≤ pp ≤ pp ≤ pp ≤ pp ≤ pp ≤ pp ≤ pp ≤ pp ≤ pp ≤ pp ≤ pp ≤ pp ≤
pp ≤ pp ≤ pp ≤ pp ≤ pp ≤ pp ≤ pp ≤ pp ≤ pp ≤ pp ≤ pp ≤ pp ≤ pp ≤ pp ≤
pp ≤ pp ≤ pp ≤ pp ≤ pp ≤ pp ≤ pp ≤ pp ≤ pp ≤ pp ≤ p ≤ p ≤ p ≤ p ≤ p ≤
p ≤ p ≤ p ≤ p ≤ p ≤ pp ≤ pp ≤ p
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