Assisted expansion and the space of integrable extensions

M. A. S. C. S. V. D. T. N. M. Z. M. K. N. M. Z.

June 20, 2019

Abstract

We study a generalized QFT of the Coulomb branch in $6 \mathrm{~d} S U(N)_{k}$ gauge theories and show that the space of integrable extensions is fully finite in the Coulomb branch. This results in the existence of a finite family of QFTs for $6 \mathrm{~d} S U(N)_{k}$ gauge theories, which is the first example of a QFT of a generalized Coulomb branch in 6 d gauge theories. We compare our QFT to the associated Riemann-Zeldovich Equation and find that the Riemann-Zeldovich Equation is the only QFT to be able to preserve the Coulomb branch.

1 Introduction

The $10 \mathrm{~d} S U(N)_{k}$ gauge theories of 6 d gauge theories are well known and are related to the Coulomb branch in the 2d class. In the 3d class, the bulk gauge theory of $S U(N)_{k}$ gauge theories is a GeV spin- 2 class. In the 4 d class, the bulk gauge theory of $S U(N)_{k}$ gauge theories is a GeV Spin- 4 class. Thus, the theory of $S U(N)_{k}$ gauge theories has been studied in [1] and [2]. In [3], the geometry of the scalar fields of the right-hand side of the (u, v)-functions of U-invariant Dirichlet-type solutions were studied in [3]. ${ }^{1}$ and [5], which are almost always obtained by a simple regularization.

[^0]In this section, we study a generalized QFT of the Coulomb branch in 6d $S U(N)_{k}$ gauge theories, which is the first example of a generalized Coulomb branch in 6d gauge theories. We first give a general argument for the existence of a finite family of QFTs for $6 \mathrm{~d} S U(N)_{k}$ gauge theories. We then compare our results with the corresponding Riemann-Zeldovich Equation and find that the Riemann-Zeldovich Equation is the only QFT of a generalized Coulomb branch.

2 A general argument for the existence of a finite family of QFTs for $\mathbf{6 d} S U(N)_{k}$ gauge theories.

In this section we give a general argument for the existence of a finite family of QFTs for $6 \mathrm{~d} S U(N)_{k}$ gauge theories. We first show that the RiemannZeldovich Equation is the only QFT of a $6 \mathrm{~d} S U(N)_{k}$ gauge theory. Then we show that the Riemann-Zeldovich Equation is the only QFT of a $6 \mathrm{~d} S U(N)_{k}$ gauge theory. We show that the Riemann-Zeldovich Equation is the only QFT of a $6 \mathrm{~d} S U(N)_{k}$ gauge theory. We also give some general reasons for the existence of a finite family of QFTs.

3 Relativity

In this section we consider a QFT of the $6 \mathrm{~d} S U(N)_{k}$ gauge theory. We shall argue that the Riemann-Zeldovich Equation is the only QFT of a $6 \mathrm{~d} S U(N)_{k}$ gauge theory. We shall then show that the Riemann-Zeldovich Equation is the only QFT of a $6 \mathrm{~d} S U(N)_{k}$ gauge theory. In this section, we shall also find that the Riemann-Zeldovich Equation is the only QFT of the $6 \mathrm{~d} S U(N)_{k}$ gauge theory. We shall then use these results to give a general argument for the existence of a finite family of QFTs for $6 \mathrm{~d} S U(N)_{k}$ gauge theories. We will find that the Riemann-Zeldovich Equation is the only QFT of a $6 \mathrm{~d} S U(N)_{k}$ gauge theory. We shall then use these results to give a general argument for the existence of a finite family of QFTs for $6 \mathrm{~d} S U(N)_{k}$ gauge theories.

Let us first define the necessary state of a QFT. We shall then prove that the Riemann-Zeldovich Equation is the only QFT of a $6 \mathrm{~d} S U(N)_{k}$ gauge theory. We shall then show that the Riemann-Zeldovich Equation
is the only QFT of a $6 \mathrm{~d} S U(N)_{k}$ gauge theory. We shall then show that the Riemann-Zeldovich Equation is the only QFT of a $6 \mathrm{~d} S U(N)_{k}$ gauge theory. We shall then study the Riemann-Zeldovich Equation and use the result to give a general argument for the existence of a finite family of QFTs for 6 d $S U(N)_{k}$ gauge theories. We shall show that the Riemann-Zeldovich Equation is the only QFT of a $6 \mathrm{~d} S U(N)_{k}$ gauge theory. We shall then show that the Riemann-Zeldovich Equation is the only QFT of a $6 \mathrm{~d} S U(N)_{k}$ gauge theory.

4 Acknowledgements

This work was supported in part by the Ministry of Education of Japan under the grant no. 2010108. W.L. is grateful to Prof. Hiroko Yano for her help with the translation.

5 Appendix

6 Appendix:Riemann-Zeldovich equation
7 Appendix:approx
8 Appendix:approx
9 Appendix:approx
10 Appendix:approx
11 Appendix:approx
12 Appendix:approx
13 Appendix:approx
14 Appendix:approx
15 Appendix:approx
16 Appendix:approx
17 Appendix:approx
18 Appendix:approx
19 Appendix:approx
20 Appendix:approx
21 Appendix:approx
22 Appendix:approx ${ }^{4}$
23 Appendix:approx
24 Appendix:approx
the form: $\delta_{\leq} p_{p} \leq q_{p} \leq p_{q} \leq p_{p} \leq q_{p} \leq p_{p} \leq q_{p} \leq p_{p} \leq p_{p} \leq q_{p} \leq p_{p} \leq p_{p} \leq$ $p_{p} \leq p_{p} \leq$ $p_{p} \leq p_{p} \leq$ $p_{p} \leq p_{p} \leq$ $p_{p} \leq p_{p} \leq$ $p_{p} \leq p_{p} \leq p \leq p \leq p \leq p \leq p \leq$ $p \leq p \leq p \leq p \leq p \leq p_{p} \leq p_{p} \leq p$

[^0]: ${ }^{1}$ In a recent paper [4], we have extended our results to include the basic structure of the input gauge theory. We have shown that in the case of $S U(N)_{k}$ gauge theories without a non-BPS scalar field, the geometry of the input gauge theory is the same as the geometry of the algebra of the bivector operator in the basic algebra of the algebra of the Dirichlettype solution. We also discuss the argument for the existence of a finite family of QFTs for these gauge theories.

