Non-generic integrable systems

M. M. Bozhilov

June 20, 2019

Abstract

We compute the non-generic integrable systems of elliptic L-algebras in $\left.A d S_{3 \times S}\left(\operatorname{AdS}_{3 \times S}\right)\right)$ with $S=3$ and $S=2$ for $2 n \geq 4$. The results are compared with those obtained by the same number from the duality of $A d S_{3 \times S}$ and $A d S_{3 \times S}$ in the case of $2 n \geq 4$. The unification of the duality is shown to be the consequence of the algebra of the two singular integrable systems.

1 Introduction

In this section we compute the integrable systems of elliptic L-algebras in $A d S_{3 \times S}\left(\operatorname{AdS}_{3 \times S}\right)$ with $S=3$ and $S=2$. The problem is to obtain the nongeneric integrable systems of elliptic L-algebras in $A d S_{3 \times S}\left(\operatorname{AdS}_{3 \times S}\right)$ with $S=3$ and $S=2$. To obtain the non-generic integrable systems of elliptic L-algebras in $A d S_{3 \times S}\left(\operatorname{AdS}_{3 \times S}\right)$ with $S=3$ and $S=2$, we compute the integrable systems of elliptic L-algebras in $A d S_{3 \times S}\left(\operatorname{AdS}_{3 \times S}\right)$ with $S=3$ and $S=2$ by means of the dual algebra of $A d S^{2}$ and $A d S^{3}$. The result is that the integrable systems of elliptic L-algebras in $A d S_{3 \times S}\left(\operatorname{AdS}_{3 \times S}\right)$ with $S=3$ and $S=2$ are shown by means of the dual algebra of $A d S^{2}$ and $A d S^{3}$. The main result is that the integrable systems of elliptic L-algebras in $A d S_{3 \times S}$ $\left(\operatorname{AdS}_{3 \times S}\right)$ with $S=3$ and $S=2$ are shown by means of the dual algebra of $A d S^{2}$ and $A d S^{3}$.

In order to compute the integrable systems of elliptic L-algebras in $A d S_{3 \times S}$ $\left(\operatorname{AdS}_{3 \times S}\right)$ with $S=3$ and $S=2$, we have to take into account the case of the dual paradox.

The dual paradox can be solved by the transformation of the algebra. This is done by a particular addition to ${ }^{2}$ that follows from the formula
$S=3, S=2$. In this case, the dual paradox is solved. However, the dual paradox can be solved in the case of the dual paradox of $A d S_{3 \times S}$. This extension follows from an elliptic L-algebra with $S=3$ and $S=2$.

2 Conclusion

In this paper we have studied the non-trivial case of dual paradox in $A d S_{3 \times S}$. In this case, the dual paradox occurs when $A d S_{3 \times S}$ is used as the algebra of $A d S_{3 \times S}$. This extension is obtained from an elliptic L-algebra with $S=3$ and $S=2$. With this extension, the dual paradox is solved. Nevertheless, the dual paradox can be solved in the case of the single-point dual paradox of $A d S_{3 \times S}$. With this extension, the dual paradox can be solved in the case of the single-point dual paradox of $A d S_{3 \times S}$. In this case, the dual paradox is solved only by a particular addition to $A d S_{3 \times S}$. In this case, the dual paradox is solved but the dual paradox of $A d S_{3 \times S}$ can be solved by the addition. In this case, the dual paradox of $A d S_{3 \times S}$ can be solved by a particular addition to $3 \times S$. Therefore, the dual paradox of $A d S_{3 \times S}$ can be solved in the case of the dual paradox of $A d S_{3 \times S}$.

3 Acknowledgments

This work was supported by the Ministry of Education, Science and Sports of the Republic of Korea.

4 Conclusions

In this work, we have shown that the dual paradox of $A d S_{3 \times S}$ can be solved by the addition. In the case of the dual paradox of $A d S_{3 \times S}$, we have shown that the dual paradox of $A d S_{3 \times S}$ can be solved by the addition to $3 \times S$. In the case of both paradoxes, we have shown that the dual paradox of $A d S_{3 \times S}$ can be solved by the addition to $3 \times S$. Thus, we have shown that the dual paradox of $A d S_{3 \times S}$ can be solved by adding to $3 \times S$.

